Cross-Subject Lifelong Learning for Continuous Estimation From Surface Electromyographic Signal
The employment of surface electromyographic (sEMG) signals in the estimation of hand kinematics represents a promising non-invasive methodology for the advancement of human-machine interfaces. However, the limitations of existing subject-specific methods are obvious as they confine the application t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on neural systems and rehabilitation engineering 2024, Vol.32, p.1965-1973 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1973 |
---|---|
container_issue | |
container_start_page | 1965 |
container_title | IEEE transactions on neural systems and rehabilitation engineering |
container_volume | 32 |
creator | Chen, Xingjian Guo, Weiyu Lin, Chuang Jiang, Ning Su, Jingyong |
description | The employment of surface electromyographic (sEMG) signals in the estimation of hand kinematics represents a promising non-invasive methodology for the advancement of human-machine interfaces. However, the limitations of existing subject-specific methods are obvious as they confine the application to individual models that are custom-tailored for specific subjects, thereby reducing the potential for broader applicability. In addition, current cross-subject methods are challenged in their ability to simultaneously cater to the needs of both new and existing users effectively. To overcome these challenges, we propose the Cross-Subject Lifelong Network (CSLN). CSLN incorporates a novel lifelong learning approach, maintaining the patterns of sEMG signals across a varied user population and across different temporal scales. Our method enhances the generalization of acquired patterns, making it applicable to various individuals and temporal contexts. Our experimental investigations, encompassing both joint and sequential training approaches, demonstrate that the CSLN model not only attains enhanced performance in cross-subject scenarios but also effectively addresses the issue of catastrophic forgetting, thereby augmenting training efficacy. |
doi_str_mv | 10.1109/TNSRE.2024.3400535 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNSRE_2024_3400535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10530128</ieee_id><doaj_id>oai_doaj_org_article_756da30c1dd54acd969d9f9d2325e69c</doaj_id><sourcerecordid>3054839745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-8ac5c560929d1dfc3357cc447880dd0e26737ecedec40848e9fdacf322e509193</originalsourceid><addsrcrecordid>eNpdkU2LFDEQhoMo7rr6B0SkwYuXHitf3clRhlldGBSc9RyySWXM0NMZk-7D_nszHy7iqYrieV-q6iXkLYUFpaA_3X_b_FgtGDCx4AJAcvmMXFMpVQuMwvNjz0UrOIMr8qqUHQDtO9m_JFdc9VxLqq6JWeZUSruZH3bopmYdAw5p3DZrtHmMtQkpN8s0TnGc01yaVZni3k4xjc1tTvtmM-dgHTarocrr4DFtsz38iq7ZxO1oh9fkRbBDwTeXekN-3q7ul1_b9fcvd8vP69YJyqdWWSed7EAz7akPjnPZOydErxR4D8i6nvfo0KMToIRCHbx1gTOGEjTV_IbcnX19sjtzyHXJ_GiSjeY0SHlrbJ6iG9D0svOWg6PeS2Gd1532OmjPOJPYaVe9Pp69Djn9nrFMZh-Lw2GwI9YfGA5SKK57ISv64T90l-Zc7z5RimnV0a5S7Ey547MzhqcFKZhjlOYUpTlGaS5RVtH7i_X8sEf_JPmbXQXenYGIiP84Sg6UKf4Hzgai2A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3058298616</pqid></control><display><type>article</type><title>Cross-Subject Lifelong Learning for Continuous Estimation From Surface Electromyographic Signal</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Chen, Xingjian ; Guo, Weiyu ; Lin, Chuang ; Jiang, Ning ; Su, Jingyong</creator><creatorcontrib>Chen, Xingjian ; Guo, Weiyu ; Lin, Chuang ; Jiang, Ning ; Su, Jingyong</creatorcontrib><description>The employment of surface electromyographic (sEMG) signals in the estimation of hand kinematics represents a promising non-invasive methodology for the advancement of human-machine interfaces. However, the limitations of existing subject-specific methods are obvious as they confine the application to individual models that are custom-tailored for specific subjects, thereby reducing the potential for broader applicability. In addition, current cross-subject methods are challenged in their ability to simultaneously cater to the needs of both new and existing users effectively. To overcome these challenges, we propose the Cross-Subject Lifelong Network (CSLN). CSLN incorporates a novel lifelong learning approach, maintaining the patterns of sEMG signals across a varied user population and across different temporal scales. Our method enhances the generalization of acquired patterns, making it applicable to various individuals and temporal contexts. Our experimental investigations, encompassing both joint and sequential training approaches, demonstrate that the CSLN model not only attains enhanced performance in cross-subject scenarios but also effectively addresses the issue of catastrophic forgetting, thereby augmenting training efficacy.</description><identifier>ISSN: 1534-4320</identifier><identifier>ISSN: 1558-0210</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2024.3400535</identifier><identifier>PMID: 38739518</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptation models ; Adult ; Algorithms ; Biomechanical Phenomena ; continuous estimation ; cross-subject ; Electromyography ; Electromyography - methods ; Estimation ; Feature extraction ; Female ; Hand - physiology ; hand kinematics ; Humans ; Kinematics ; Learning - physiology ; Lifelong learning ; Machine Learning ; Male ; Man-machine interfaces ; Man-Machine Systems ; Muscle, Skeletal - physiology ; Neural Networks, Computer ; Predictive models ; sEMG ; Task analysis ; Training ; Transfer learning ; Young Adult</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2024, Vol.32, p.1965-1973</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c413t-8ac5c560929d1dfc3357cc447880dd0e26737ecedec40848e9fdacf322e509193</cites><orcidid>0000-0003-3216-7027 ; 0000-0002-4724-4657 ; 0000-0002-9392-0134 ; 0000-0003-1579-3114</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2100,4022,27922,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38739518$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Xingjian</creatorcontrib><creatorcontrib>Guo, Weiyu</creatorcontrib><creatorcontrib>Lin, Chuang</creatorcontrib><creatorcontrib>Jiang, Ning</creatorcontrib><creatorcontrib>Su, Jingyong</creatorcontrib><title>Cross-Subject Lifelong Learning for Continuous Estimation From Surface Electromyographic Signal</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><description>The employment of surface electromyographic (sEMG) signals in the estimation of hand kinematics represents a promising non-invasive methodology for the advancement of human-machine interfaces. However, the limitations of existing subject-specific methods are obvious as they confine the application to individual models that are custom-tailored for specific subjects, thereby reducing the potential for broader applicability. In addition, current cross-subject methods are challenged in their ability to simultaneously cater to the needs of both new and existing users effectively. To overcome these challenges, we propose the Cross-Subject Lifelong Network (CSLN). CSLN incorporates a novel lifelong learning approach, maintaining the patterns of sEMG signals across a varied user population and across different temporal scales. Our method enhances the generalization of acquired patterns, making it applicable to various individuals and temporal contexts. Our experimental investigations, encompassing both joint and sequential training approaches, demonstrate that the CSLN model not only attains enhanced performance in cross-subject scenarios but also effectively addresses the issue of catastrophic forgetting, thereby augmenting training efficacy.</description><subject>Adaptation models</subject><subject>Adult</subject><subject>Algorithms</subject><subject>Biomechanical Phenomena</subject><subject>continuous estimation</subject><subject>cross-subject</subject><subject>Electromyography</subject><subject>Electromyography - methods</subject><subject>Estimation</subject><subject>Feature extraction</subject><subject>Female</subject><subject>Hand - physiology</subject><subject>hand kinematics</subject><subject>Humans</subject><subject>Kinematics</subject><subject>Learning - physiology</subject><subject>Lifelong learning</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Man-machine interfaces</subject><subject>Man-Machine Systems</subject><subject>Muscle, Skeletal - physiology</subject><subject>Neural Networks, Computer</subject><subject>Predictive models</subject><subject>sEMG</subject><subject>Task analysis</subject><subject>Training</subject><subject>Transfer learning</subject><subject>Young Adult</subject><issn>1534-4320</issn><issn>1558-0210</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU2LFDEQhoMo7rr6B0SkwYuXHitf3clRhlldGBSc9RyySWXM0NMZk-7D_nszHy7iqYrieV-q6iXkLYUFpaA_3X_b_FgtGDCx4AJAcvmMXFMpVQuMwvNjz0UrOIMr8qqUHQDtO9m_JFdc9VxLqq6JWeZUSruZH3bopmYdAw5p3DZrtHmMtQkpN8s0TnGc01yaVZni3k4xjc1tTvtmM-dgHTarocrr4DFtsz38iq7ZxO1oh9fkRbBDwTeXekN-3q7ul1_b9fcvd8vP69YJyqdWWSed7EAz7akPjnPZOydErxR4D8i6nvfo0KMToIRCHbx1gTOGEjTV_IbcnX19sjtzyHXJ_GiSjeY0SHlrbJ6iG9D0svOWg6PeS2Gd1532OmjPOJPYaVe9Pp69Djn9nrFMZh-Lw2GwI9YfGA5SKK57ISv64T90l-Zc7z5RimnV0a5S7Ey547MzhqcFKZhjlOYUpTlGaS5RVtH7i_X8sEf_JPmbXQXenYGIiP84Sg6UKf4Hzgai2A</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Chen, Xingjian</creator><creator>Guo, Weiyu</creator><creator>Lin, Chuang</creator><creator>Jiang, Ning</creator><creator>Su, Jingyong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3216-7027</orcidid><orcidid>https://orcid.org/0000-0002-4724-4657</orcidid><orcidid>https://orcid.org/0000-0002-9392-0134</orcidid><orcidid>https://orcid.org/0000-0003-1579-3114</orcidid></search><sort><creationdate>2024</creationdate><title>Cross-Subject Lifelong Learning for Continuous Estimation From Surface Electromyographic Signal</title><author>Chen, Xingjian ; Guo, Weiyu ; Lin, Chuang ; Jiang, Ning ; Su, Jingyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-8ac5c560929d1dfc3357cc447880dd0e26737ecedec40848e9fdacf322e509193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Adult</topic><topic>Algorithms</topic><topic>Biomechanical Phenomena</topic><topic>continuous estimation</topic><topic>cross-subject</topic><topic>Electromyography</topic><topic>Electromyography - methods</topic><topic>Estimation</topic><topic>Feature extraction</topic><topic>Female</topic><topic>Hand - physiology</topic><topic>hand kinematics</topic><topic>Humans</topic><topic>Kinematics</topic><topic>Learning - physiology</topic><topic>Lifelong learning</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Man-machine interfaces</topic><topic>Man-Machine Systems</topic><topic>Muscle, Skeletal - physiology</topic><topic>Neural Networks, Computer</topic><topic>Predictive models</topic><topic>sEMG</topic><topic>Task analysis</topic><topic>Training</topic><topic>Transfer learning</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xingjian</creatorcontrib><creatorcontrib>Guo, Weiyu</creatorcontrib><creatorcontrib>Lin, Chuang</creatorcontrib><creatorcontrib>Jiang, Ning</creatorcontrib><creatorcontrib>Su, Jingyong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xingjian</au><au>Guo, Weiyu</au><au>Lin, Chuang</au><au>Jiang, Ning</au><au>Su, Jingyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cross-Subject Lifelong Learning for Continuous Estimation From Surface Electromyographic Signal</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><date>2024</date><risdate>2024</risdate><volume>32</volume><spage>1965</spage><epage>1973</epage><pages>1965-1973</pages><issn>1534-4320</issn><issn>1558-0210</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>The employment of surface electromyographic (sEMG) signals in the estimation of hand kinematics represents a promising non-invasive methodology for the advancement of human-machine interfaces. However, the limitations of existing subject-specific methods are obvious as they confine the application to individual models that are custom-tailored for specific subjects, thereby reducing the potential for broader applicability. In addition, current cross-subject methods are challenged in their ability to simultaneously cater to the needs of both new and existing users effectively. To overcome these challenges, we propose the Cross-Subject Lifelong Network (CSLN). CSLN incorporates a novel lifelong learning approach, maintaining the patterns of sEMG signals across a varied user population and across different temporal scales. Our method enhances the generalization of acquired patterns, making it applicable to various individuals and temporal contexts. Our experimental investigations, encompassing both joint and sequential training approaches, demonstrate that the CSLN model not only attains enhanced performance in cross-subject scenarios but also effectively addresses the issue of catastrophic forgetting, thereby augmenting training efficacy.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38739518</pmid><doi>10.1109/TNSRE.2024.3400535</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3216-7027</orcidid><orcidid>https://orcid.org/0000-0002-4724-4657</orcidid><orcidid>https://orcid.org/0000-0002-9392-0134</orcidid><orcidid>https://orcid.org/0000-0003-1579-3114</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1534-4320 |
ispartof | IEEE transactions on neural systems and rehabilitation engineering, 2024, Vol.32, p.1965-1973 |
issn | 1534-4320 1558-0210 1558-0210 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TNSRE_2024_3400535 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adaptation models Adult Algorithms Biomechanical Phenomena continuous estimation cross-subject Electromyography Electromyography - methods Estimation Feature extraction Female Hand - physiology hand kinematics Humans Kinematics Learning - physiology Lifelong learning Machine Learning Male Man-machine interfaces Man-Machine Systems Muscle, Skeletal - physiology Neural Networks, Computer Predictive models sEMG Task analysis Training Transfer learning Young Adult |
title | Cross-Subject Lifelong Learning for Continuous Estimation From Surface Electromyographic Signal |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T06%3A00%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cross-Subject%20Lifelong%20Learning%20for%20Continuous%20Estimation%20From%20Surface%20Electromyographic%20Signal&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Chen,%20Xingjian&rft.date=2024&rft.volume=32&rft.spage=1965&rft.epage=1973&rft.pages=1965-1973&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2024.3400535&rft_dat=%3Cproquest_cross%3E3054839745%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3058298616&rft_id=info:pmid/38739518&rft_ieee_id=10530128&rft_doaj_id=oai_doaj_org_article_756da30c1dd54acd969d9f9d2325e69c&rfr_iscdi=true |