Cross-Subject Lifelong Learning for Continuous Estimation From Surface Electromyographic Signal

The employment of surface electromyographic (sEMG) signals in the estimation of hand kinematics represents a promising non-invasive methodology for the advancement of human-machine interfaces. However, the limitations of existing subject-specific methods are obvious as they confine the application t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on neural systems and rehabilitation engineering 2024, Vol.32, p.1965-1973
Hauptverfasser: Chen, Xingjian, Guo, Weiyu, Lin, Chuang, Jiang, Ning, Su, Jingyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1973
container_issue
container_start_page 1965
container_title IEEE transactions on neural systems and rehabilitation engineering
container_volume 32
creator Chen, Xingjian
Guo, Weiyu
Lin, Chuang
Jiang, Ning
Su, Jingyong
description The employment of surface electromyographic (sEMG) signals in the estimation of hand kinematics represents a promising non-invasive methodology for the advancement of human-machine interfaces. However, the limitations of existing subject-specific methods are obvious as they confine the application to individual models that are custom-tailored for specific subjects, thereby reducing the potential for broader applicability. In addition, current cross-subject methods are challenged in their ability to simultaneously cater to the needs of both new and existing users effectively. To overcome these challenges, we propose the Cross-Subject Lifelong Network (CSLN). CSLN incorporates a novel lifelong learning approach, maintaining the patterns of sEMG signals across a varied user population and across different temporal scales. Our method enhances the generalization of acquired patterns, making it applicable to various individuals and temporal contexts. Our experimental investigations, encompassing both joint and sequential training approaches, demonstrate that the CSLN model not only attains enhanced performance in cross-subject scenarios but also effectively addresses the issue of catastrophic forgetting, thereby augmenting training efficacy.
doi_str_mv 10.1109/TNSRE.2024.3400535
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNSRE_2024_3400535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10530128</ieee_id><doaj_id>oai_doaj_org_article_756da30c1dd54acd969d9f9d2325e69c</doaj_id><sourcerecordid>3054839745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-8ac5c560929d1dfc3357cc447880dd0e26737ecedec40848e9fdacf322e509193</originalsourceid><addsrcrecordid>eNpdkU2LFDEQhoMo7rr6B0SkwYuXHitf3clRhlldGBSc9RyySWXM0NMZk-7D_nszHy7iqYrieV-q6iXkLYUFpaA_3X_b_FgtGDCx4AJAcvmMXFMpVQuMwvNjz0UrOIMr8qqUHQDtO9m_JFdc9VxLqq6JWeZUSruZH3bopmYdAw5p3DZrtHmMtQkpN8s0TnGc01yaVZni3k4xjc1tTvtmM-dgHTarocrr4DFtsz38iq7ZxO1oh9fkRbBDwTeXekN-3q7ul1_b9fcvd8vP69YJyqdWWSed7EAz7akPjnPZOydErxR4D8i6nvfo0KMToIRCHbx1gTOGEjTV_IbcnX19sjtzyHXJ_GiSjeY0SHlrbJ6iG9D0svOWg6PeS2Gd1532OmjPOJPYaVe9Pp69Djn9nrFMZh-Lw2GwI9YfGA5SKK57ISv64T90l-Zc7z5RimnV0a5S7Ey547MzhqcFKZhjlOYUpTlGaS5RVtH7i_X8sEf_JPmbXQXenYGIiP84Sg6UKf4Hzgai2A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3058298616</pqid></control><display><type>article</type><title>Cross-Subject Lifelong Learning for Continuous Estimation From Surface Electromyographic Signal</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Chen, Xingjian ; Guo, Weiyu ; Lin, Chuang ; Jiang, Ning ; Su, Jingyong</creator><creatorcontrib>Chen, Xingjian ; Guo, Weiyu ; Lin, Chuang ; Jiang, Ning ; Su, Jingyong</creatorcontrib><description>The employment of surface electromyographic (sEMG) signals in the estimation of hand kinematics represents a promising non-invasive methodology for the advancement of human-machine interfaces. However, the limitations of existing subject-specific methods are obvious as they confine the application to individual models that are custom-tailored for specific subjects, thereby reducing the potential for broader applicability. In addition, current cross-subject methods are challenged in their ability to simultaneously cater to the needs of both new and existing users effectively. To overcome these challenges, we propose the Cross-Subject Lifelong Network (CSLN). CSLN incorporates a novel lifelong learning approach, maintaining the patterns of sEMG signals across a varied user population and across different temporal scales. Our method enhances the generalization of acquired patterns, making it applicable to various individuals and temporal contexts. Our experimental investigations, encompassing both joint and sequential training approaches, demonstrate that the CSLN model not only attains enhanced performance in cross-subject scenarios but also effectively addresses the issue of catastrophic forgetting, thereby augmenting training efficacy.</description><identifier>ISSN: 1534-4320</identifier><identifier>ISSN: 1558-0210</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2024.3400535</identifier><identifier>PMID: 38739518</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptation models ; Adult ; Algorithms ; Biomechanical Phenomena ; continuous estimation ; cross-subject ; Electromyography ; Electromyography - methods ; Estimation ; Feature extraction ; Female ; Hand - physiology ; hand kinematics ; Humans ; Kinematics ; Learning - physiology ; Lifelong learning ; Machine Learning ; Male ; Man-machine interfaces ; Man-Machine Systems ; Muscle, Skeletal - physiology ; Neural Networks, Computer ; Predictive models ; sEMG ; Task analysis ; Training ; Transfer learning ; Young Adult</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2024, Vol.32, p.1965-1973</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c413t-8ac5c560929d1dfc3357cc447880dd0e26737ecedec40848e9fdacf322e509193</cites><orcidid>0000-0003-3216-7027 ; 0000-0002-4724-4657 ; 0000-0002-9392-0134 ; 0000-0003-1579-3114</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2100,4022,27922,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38739518$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Xingjian</creatorcontrib><creatorcontrib>Guo, Weiyu</creatorcontrib><creatorcontrib>Lin, Chuang</creatorcontrib><creatorcontrib>Jiang, Ning</creatorcontrib><creatorcontrib>Su, Jingyong</creatorcontrib><title>Cross-Subject Lifelong Learning for Continuous Estimation From Surface Electromyographic Signal</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><description>The employment of surface electromyographic (sEMG) signals in the estimation of hand kinematics represents a promising non-invasive methodology for the advancement of human-machine interfaces. However, the limitations of existing subject-specific methods are obvious as they confine the application to individual models that are custom-tailored for specific subjects, thereby reducing the potential for broader applicability. In addition, current cross-subject methods are challenged in their ability to simultaneously cater to the needs of both new and existing users effectively. To overcome these challenges, we propose the Cross-Subject Lifelong Network (CSLN). CSLN incorporates a novel lifelong learning approach, maintaining the patterns of sEMG signals across a varied user population and across different temporal scales. Our method enhances the generalization of acquired patterns, making it applicable to various individuals and temporal contexts. Our experimental investigations, encompassing both joint and sequential training approaches, demonstrate that the CSLN model not only attains enhanced performance in cross-subject scenarios but also effectively addresses the issue of catastrophic forgetting, thereby augmenting training efficacy.</description><subject>Adaptation models</subject><subject>Adult</subject><subject>Algorithms</subject><subject>Biomechanical Phenomena</subject><subject>continuous estimation</subject><subject>cross-subject</subject><subject>Electromyography</subject><subject>Electromyography - methods</subject><subject>Estimation</subject><subject>Feature extraction</subject><subject>Female</subject><subject>Hand - physiology</subject><subject>hand kinematics</subject><subject>Humans</subject><subject>Kinematics</subject><subject>Learning - physiology</subject><subject>Lifelong learning</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Man-machine interfaces</subject><subject>Man-Machine Systems</subject><subject>Muscle, Skeletal - physiology</subject><subject>Neural Networks, Computer</subject><subject>Predictive models</subject><subject>sEMG</subject><subject>Task analysis</subject><subject>Training</subject><subject>Transfer learning</subject><subject>Young Adult</subject><issn>1534-4320</issn><issn>1558-0210</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU2LFDEQhoMo7rr6B0SkwYuXHitf3clRhlldGBSc9RyySWXM0NMZk-7D_nszHy7iqYrieV-q6iXkLYUFpaA_3X_b_FgtGDCx4AJAcvmMXFMpVQuMwvNjz0UrOIMr8qqUHQDtO9m_JFdc9VxLqq6JWeZUSruZH3bopmYdAw5p3DZrtHmMtQkpN8s0TnGc01yaVZni3k4xjc1tTvtmM-dgHTarocrr4DFtsz38iq7ZxO1oh9fkRbBDwTeXekN-3q7ul1_b9fcvd8vP69YJyqdWWSed7EAz7akPjnPZOydErxR4D8i6nvfo0KMToIRCHbx1gTOGEjTV_IbcnX19sjtzyHXJ_GiSjeY0SHlrbJ6iG9D0svOWg6PeS2Gd1532OmjPOJPYaVe9Pp69Djn9nrFMZh-Lw2GwI9YfGA5SKK57ISv64T90l-Zc7z5RimnV0a5S7Ey547MzhqcFKZhjlOYUpTlGaS5RVtH7i_X8sEf_JPmbXQXenYGIiP84Sg6UKf4Hzgai2A</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Chen, Xingjian</creator><creator>Guo, Weiyu</creator><creator>Lin, Chuang</creator><creator>Jiang, Ning</creator><creator>Su, Jingyong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3216-7027</orcidid><orcidid>https://orcid.org/0000-0002-4724-4657</orcidid><orcidid>https://orcid.org/0000-0002-9392-0134</orcidid><orcidid>https://orcid.org/0000-0003-1579-3114</orcidid></search><sort><creationdate>2024</creationdate><title>Cross-Subject Lifelong Learning for Continuous Estimation From Surface Electromyographic Signal</title><author>Chen, Xingjian ; Guo, Weiyu ; Lin, Chuang ; Jiang, Ning ; Su, Jingyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-8ac5c560929d1dfc3357cc447880dd0e26737ecedec40848e9fdacf322e509193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Adult</topic><topic>Algorithms</topic><topic>Biomechanical Phenomena</topic><topic>continuous estimation</topic><topic>cross-subject</topic><topic>Electromyography</topic><topic>Electromyography - methods</topic><topic>Estimation</topic><topic>Feature extraction</topic><topic>Female</topic><topic>Hand - physiology</topic><topic>hand kinematics</topic><topic>Humans</topic><topic>Kinematics</topic><topic>Learning - physiology</topic><topic>Lifelong learning</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Man-machine interfaces</topic><topic>Man-Machine Systems</topic><topic>Muscle, Skeletal - physiology</topic><topic>Neural Networks, Computer</topic><topic>Predictive models</topic><topic>sEMG</topic><topic>Task analysis</topic><topic>Training</topic><topic>Transfer learning</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xingjian</creatorcontrib><creatorcontrib>Guo, Weiyu</creatorcontrib><creatorcontrib>Lin, Chuang</creatorcontrib><creatorcontrib>Jiang, Ning</creatorcontrib><creatorcontrib>Su, Jingyong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xingjian</au><au>Guo, Weiyu</au><au>Lin, Chuang</au><au>Jiang, Ning</au><au>Su, Jingyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cross-Subject Lifelong Learning for Continuous Estimation From Surface Electromyographic Signal</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><date>2024</date><risdate>2024</risdate><volume>32</volume><spage>1965</spage><epage>1973</epage><pages>1965-1973</pages><issn>1534-4320</issn><issn>1558-0210</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>The employment of surface electromyographic (sEMG) signals in the estimation of hand kinematics represents a promising non-invasive methodology for the advancement of human-machine interfaces. However, the limitations of existing subject-specific methods are obvious as they confine the application to individual models that are custom-tailored for specific subjects, thereby reducing the potential for broader applicability. In addition, current cross-subject methods are challenged in their ability to simultaneously cater to the needs of both new and existing users effectively. To overcome these challenges, we propose the Cross-Subject Lifelong Network (CSLN). CSLN incorporates a novel lifelong learning approach, maintaining the patterns of sEMG signals across a varied user population and across different temporal scales. Our method enhances the generalization of acquired patterns, making it applicable to various individuals and temporal contexts. Our experimental investigations, encompassing both joint and sequential training approaches, demonstrate that the CSLN model not only attains enhanced performance in cross-subject scenarios but also effectively addresses the issue of catastrophic forgetting, thereby augmenting training efficacy.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38739518</pmid><doi>10.1109/TNSRE.2024.3400535</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3216-7027</orcidid><orcidid>https://orcid.org/0000-0002-4724-4657</orcidid><orcidid>https://orcid.org/0000-0002-9392-0134</orcidid><orcidid>https://orcid.org/0000-0003-1579-3114</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1534-4320
ispartof IEEE transactions on neural systems and rehabilitation engineering, 2024, Vol.32, p.1965-1973
issn 1534-4320
1558-0210
1558-0210
language eng
recordid cdi_crossref_primary_10_1109_TNSRE_2024_3400535
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adaptation models
Adult
Algorithms
Biomechanical Phenomena
continuous estimation
cross-subject
Electromyography
Electromyography - methods
Estimation
Feature extraction
Female
Hand - physiology
hand kinematics
Humans
Kinematics
Learning - physiology
Lifelong learning
Machine Learning
Male
Man-machine interfaces
Man-Machine Systems
Muscle, Skeletal - physiology
Neural Networks, Computer
Predictive models
sEMG
Task analysis
Training
Transfer learning
Young Adult
title Cross-Subject Lifelong Learning for Continuous Estimation From Surface Electromyographic Signal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T06%3A00%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cross-Subject%20Lifelong%20Learning%20for%20Continuous%20Estimation%20From%20Surface%20Electromyographic%20Signal&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Chen,%20Xingjian&rft.date=2024&rft.volume=32&rft.spage=1965&rft.epage=1973&rft.pages=1965-1973&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2024.3400535&rft_dat=%3Cproquest_cross%3E3054839745%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3058298616&rft_id=info:pmid/38739518&rft_ieee_id=10530128&rft_doaj_id=oai_doaj_org_article_756da30c1dd54acd969d9f9d2325e69c&rfr_iscdi=true