Model-Based Step Length Estimation Using a Pendant-Integrated Mobility Sensor
The step length is an important parameter in gait analysis. Long-term monitoring applications for gait analysis are often based on inertial measurement units (IMUs) due to their low-cost and unobtrusive nature. Spatial gait parameters, such as step or stride length, are therefore not directly access...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on neural systems and rehabilitation engineering 2021, Vol.29, p.2655-2665 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2665 |
---|---|
container_issue | |
container_start_page | 2655 |
container_title | IEEE transactions on neural systems and rehabilitation engineering |
container_volume | 29 |
creator | Lueken, Markus Loeser, Johannes Weber, Nikolai Bollheimer, Cornelius Leonhardt, Steffen Ngo, Chuong |
description | The step length is an important parameter in gait analysis. Long-term monitoring applications for gait analysis are often based on inertial measurement units (IMUs) due to their low-cost and unobtrusive nature. Spatial gait parameters, such as step or stride length, are therefore not directly accessible. In this contribution, we focus on model-based algorithms for step length estimation based on a pendant-integrated IMU during slow walking speeds. We present a model-based approach to estimate the step length, which is divided into two successive steps. As the first part of our approach, we present an algorithm for estimation of the vertical displacement of the center of mass (CoM) during gait. Based on this estimate, we present a novel approach to estimate the step length, which we have deduced from a previously published, simplified gait model. The algorithm is compared to a commonly known approach for accelometry-based step length prediction and validated against reference data obtained from a force plate-integrated treadmill for gait analysis during a clinical study with ten healthy subjects. Due to the applicability to gait stability assessment in elderly or gait impaired patients, we focus on slow walking speeds (1−4 km h −1 ). The presented algorithms outperform the existing approach and the proposed model calculations provide a more accurate prediction. For the vertical displacement, we achieved a precision of 9.3% (CoV) with an RMSE of 1.5 mm in terms of the trajectory amplitude during normal gait patterns. The step length estimation yields satisfying results with a relative prediction error of lower than 10% for walking speeds of 2−4kmh −1 . |
doi_str_mv | 10.1109/TNSRE.2021.3133535 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNSRE_2021_3133535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9641803</ieee_id><sourcerecordid>2608132524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-3abdd3fd0e35686ad40b15702c887edc4008b4d84ea2aa6441141968731bff0a3</originalsourceid><addsrcrecordid>eNpdkE9PwjAYhxujEUS_gCZmiRcvw_5fOSpBJQE1AuelW9_hyOhw7Q58e4sgB09t2uf3y_s-CF0T3CcEDx7mb7PPUZ9iSvqMMCaYOEFdIoSKwxM-3d0ZjzmjuIMunFthTBIpknPUYVwlXEnaRdNpbaCKn7QDE808bKIJ2KX_ikbOl2vty9pGC1faZaSjD7BGWx-PrYdlo31ITOusrEq_jWZgXd1corNCVw6uDmcPLZ5H8-FrPHl_GQ8fJ3HOBsLHTGfGsMJgYEIqqQ3HGREJprlSCZicY6wybhQHTbWWnBPCyUCqhJGsKLBmPXS_79009XcLzqfr0uVQVdpC3bqUSqwIo4LygN79Q1d129gwXaCCNSm4ooGieypvaucaKNJNE9ZvtinB6U52-is73clOD7JD6PZQ3WZrMMfIn90A3OyBEgCO3wPJicKM_QANAYGW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2613365482</pqid></control><display><type>article</type><title>Model-Based Step Length Estimation Using a Pendant-Integrated Mobility Sensor</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lueken, Markus ; Loeser, Johannes ; Weber, Nikolai ; Bollheimer, Cornelius ; Leonhardt, Steffen ; Ngo, Chuong</creator><creatorcontrib>Lueken, Markus ; Loeser, Johannes ; Weber, Nikolai ; Bollheimer, Cornelius ; Leonhardt, Steffen ; Ngo, Chuong</creatorcontrib><description>The step length is an important parameter in gait analysis. Long-term monitoring applications for gait analysis are often based on inertial measurement units (IMUs) due to their low-cost and unobtrusive nature. Spatial gait parameters, such as step or stride length, are therefore not directly accessible. In this contribution, we focus on model-based algorithms for step length estimation based on a pendant-integrated IMU during slow walking speeds. We present a model-based approach to estimate the step length, which is divided into two successive steps. As the first part of our approach, we present an algorithm for estimation of the vertical displacement of the center of mass (CoM) during gait. Based on this estimate, we present a novel approach to estimate the step length, which we have deduced from a previously published, simplified gait model. The algorithm is compared to a commonly known approach for accelometry-based step length prediction and validated against reference data obtained from a force plate-integrated treadmill for gait analysis during a clinical study with ten healthy subjects. Due to the applicability to gait stability assessment in elderly or gait impaired patients, we focus on slow walking speeds (1−4 km h −1 ). The presented algorithms outperform the existing approach and the proposed model calculations provide a more accurate prediction. For the vertical displacement, we achieved a precision of 9.3% (CoV) with an RMSE of 1.5 mm in terms of the trajectory amplitude during normal gait patterns. The step length estimation yields satisfying results with a relative prediction error of lower than 10% for walking speeds of 2−4kmh −1 .</description><identifier>ISSN: 1534-4320</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2021.3133535</identifier><identifier>PMID: 34874862</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accelerometers ; Aged ; Algorithms ; Estimation ; Exercise Test ; Feature extraction ; Foot ; Force plates ; Gait ; Gait Analysis ; Gait recognition ; Humans ; Inertial measurement unit ; Inertial platforms ; Legged locomotion ; Mathematical models ; Mobility ; Parameters ; Predictions ; Predictive models ; Stability analysis ; step length estimation ; Trajectory ; Treadmills ; Walking ; Walking Speed</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2021, Vol.29, p.2655-2665</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-3abdd3fd0e35686ad40b15702c887edc4008b4d84ea2aa6441141968731bff0a3</citedby><cites>FETCH-LOGICAL-c395t-3abdd3fd0e35686ad40b15702c887edc4008b4d84ea2aa6441141968731bff0a3</cites><orcidid>0000-0002-6898-6887 ; 0000-0002-2487-0962 ; 0000-0003-3927-1716 ; 0000-0002-3961-2173 ; 0000-0002-1580-834X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34874862$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lueken, Markus</creatorcontrib><creatorcontrib>Loeser, Johannes</creatorcontrib><creatorcontrib>Weber, Nikolai</creatorcontrib><creatorcontrib>Bollheimer, Cornelius</creatorcontrib><creatorcontrib>Leonhardt, Steffen</creatorcontrib><creatorcontrib>Ngo, Chuong</creatorcontrib><title>Model-Based Step Length Estimation Using a Pendant-Integrated Mobility Sensor</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><description>The step length is an important parameter in gait analysis. Long-term monitoring applications for gait analysis are often based on inertial measurement units (IMUs) due to their low-cost and unobtrusive nature. Spatial gait parameters, such as step or stride length, are therefore not directly accessible. In this contribution, we focus on model-based algorithms for step length estimation based on a pendant-integrated IMU during slow walking speeds. We present a model-based approach to estimate the step length, which is divided into two successive steps. As the first part of our approach, we present an algorithm for estimation of the vertical displacement of the center of mass (CoM) during gait. Based on this estimate, we present a novel approach to estimate the step length, which we have deduced from a previously published, simplified gait model. The algorithm is compared to a commonly known approach for accelometry-based step length prediction and validated against reference data obtained from a force plate-integrated treadmill for gait analysis during a clinical study with ten healthy subjects. Due to the applicability to gait stability assessment in elderly or gait impaired patients, we focus on slow walking speeds (1−4 km h −1 ). The presented algorithms outperform the existing approach and the proposed model calculations provide a more accurate prediction. For the vertical displacement, we achieved a precision of 9.3% (CoV) with an RMSE of 1.5 mm in terms of the trajectory amplitude during normal gait patterns. The step length estimation yields satisfying results with a relative prediction error of lower than 10% for walking speeds of 2−4kmh −1 .</description><subject>Accelerometers</subject><subject>Aged</subject><subject>Algorithms</subject><subject>Estimation</subject><subject>Exercise Test</subject><subject>Feature extraction</subject><subject>Foot</subject><subject>Force plates</subject><subject>Gait</subject><subject>Gait Analysis</subject><subject>Gait recognition</subject><subject>Humans</subject><subject>Inertial measurement unit</subject><subject>Inertial platforms</subject><subject>Legged locomotion</subject><subject>Mathematical models</subject><subject>Mobility</subject><subject>Parameters</subject><subject>Predictions</subject><subject>Predictive models</subject><subject>Stability analysis</subject><subject>step length estimation</subject><subject>Trajectory</subject><subject>Treadmills</subject><subject>Walking</subject><subject>Walking Speed</subject><issn>1534-4320</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkE9PwjAYhxujEUS_gCZmiRcvw_5fOSpBJQE1AuelW9_hyOhw7Q58e4sgB09t2uf3y_s-CF0T3CcEDx7mb7PPUZ9iSvqMMCaYOEFdIoSKwxM-3d0ZjzmjuIMunFthTBIpknPUYVwlXEnaRdNpbaCKn7QDE808bKIJ2KX_ikbOl2vty9pGC1faZaSjD7BGWx-PrYdlo31ITOusrEq_jWZgXd1corNCVw6uDmcPLZ5H8-FrPHl_GQ8fJ3HOBsLHTGfGsMJgYEIqqQ3HGREJprlSCZicY6wybhQHTbWWnBPCyUCqhJGsKLBmPXS_79009XcLzqfr0uVQVdpC3bqUSqwIo4LygN79Q1d129gwXaCCNSm4ooGieypvaucaKNJNE9ZvtinB6U52-is73clOD7JD6PZQ3WZrMMfIn90A3OyBEgCO3wPJicKM_QANAYGW</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Lueken, Markus</creator><creator>Loeser, Johannes</creator><creator>Weber, Nikolai</creator><creator>Bollheimer, Cornelius</creator><creator>Leonhardt, Steffen</creator><creator>Ngo, Chuong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6898-6887</orcidid><orcidid>https://orcid.org/0000-0002-2487-0962</orcidid><orcidid>https://orcid.org/0000-0003-3927-1716</orcidid><orcidid>https://orcid.org/0000-0002-3961-2173</orcidid><orcidid>https://orcid.org/0000-0002-1580-834X</orcidid></search><sort><creationdate>2021</creationdate><title>Model-Based Step Length Estimation Using a Pendant-Integrated Mobility Sensor</title><author>Lueken, Markus ; Loeser, Johannes ; Weber, Nikolai ; Bollheimer, Cornelius ; Leonhardt, Steffen ; Ngo, Chuong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-3abdd3fd0e35686ad40b15702c887edc4008b4d84ea2aa6441141968731bff0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accelerometers</topic><topic>Aged</topic><topic>Algorithms</topic><topic>Estimation</topic><topic>Exercise Test</topic><topic>Feature extraction</topic><topic>Foot</topic><topic>Force plates</topic><topic>Gait</topic><topic>Gait Analysis</topic><topic>Gait recognition</topic><topic>Humans</topic><topic>Inertial measurement unit</topic><topic>Inertial platforms</topic><topic>Legged locomotion</topic><topic>Mathematical models</topic><topic>Mobility</topic><topic>Parameters</topic><topic>Predictions</topic><topic>Predictive models</topic><topic>Stability analysis</topic><topic>step length estimation</topic><topic>Trajectory</topic><topic>Treadmills</topic><topic>Walking</topic><topic>Walking Speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lueken, Markus</creatorcontrib><creatorcontrib>Loeser, Johannes</creatorcontrib><creatorcontrib>Weber, Nikolai</creatorcontrib><creatorcontrib>Bollheimer, Cornelius</creatorcontrib><creatorcontrib>Leonhardt, Steffen</creatorcontrib><creatorcontrib>Ngo, Chuong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lueken, Markus</au><au>Loeser, Johannes</au><au>Weber, Nikolai</au><au>Bollheimer, Cornelius</au><au>Leonhardt, Steffen</au><au>Ngo, Chuong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model-Based Step Length Estimation Using a Pendant-Integrated Mobility Sensor</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><date>2021</date><risdate>2021</risdate><volume>29</volume><spage>2655</spage><epage>2665</epage><pages>2655-2665</pages><issn>1534-4320</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>The step length is an important parameter in gait analysis. Long-term monitoring applications for gait analysis are often based on inertial measurement units (IMUs) due to their low-cost and unobtrusive nature. Spatial gait parameters, such as step or stride length, are therefore not directly accessible. In this contribution, we focus on model-based algorithms for step length estimation based on a pendant-integrated IMU during slow walking speeds. We present a model-based approach to estimate the step length, which is divided into two successive steps. As the first part of our approach, we present an algorithm for estimation of the vertical displacement of the center of mass (CoM) during gait. Based on this estimate, we present a novel approach to estimate the step length, which we have deduced from a previously published, simplified gait model. The algorithm is compared to a commonly known approach for accelometry-based step length prediction and validated against reference data obtained from a force plate-integrated treadmill for gait analysis during a clinical study with ten healthy subjects. Due to the applicability to gait stability assessment in elderly or gait impaired patients, we focus on slow walking speeds (1−4 km h −1 ). The presented algorithms outperform the existing approach and the proposed model calculations provide a more accurate prediction. For the vertical displacement, we achieved a precision of 9.3% (CoV) with an RMSE of 1.5 mm in terms of the trajectory amplitude during normal gait patterns. The step length estimation yields satisfying results with a relative prediction error of lower than 10% for walking speeds of 2−4kmh −1 .</abstract><cop>United States</cop><pub>IEEE</pub><pmid>34874862</pmid><doi>10.1109/TNSRE.2021.3133535</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6898-6887</orcidid><orcidid>https://orcid.org/0000-0002-2487-0962</orcidid><orcidid>https://orcid.org/0000-0003-3927-1716</orcidid><orcidid>https://orcid.org/0000-0002-3961-2173</orcidid><orcidid>https://orcid.org/0000-0002-1580-834X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1534-4320 |
ispartof | IEEE transactions on neural systems and rehabilitation engineering, 2021, Vol.29, p.2655-2665 |
issn | 1534-4320 1558-0210 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TNSRE_2021_3133535 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accelerometers Aged Algorithms Estimation Exercise Test Feature extraction Foot Force plates Gait Gait Analysis Gait recognition Humans Inertial measurement unit Inertial platforms Legged locomotion Mathematical models Mobility Parameters Predictions Predictive models Stability analysis step length estimation Trajectory Treadmills Walking Walking Speed |
title | Model-Based Step Length Estimation Using a Pendant-Integrated Mobility Sensor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T01%3A17%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model-Based%20Step%20Length%20Estimation%20Using%20a%20Pendant-Integrated%20Mobility%20Sensor&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Lueken,%20Markus&rft.date=2021&rft.volume=29&rft.spage=2655&rft.epage=2665&rft.pages=2655-2665&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2021.3133535&rft_dat=%3Cproquest_cross%3E2608132524%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2613365482&rft_id=info:pmid/34874862&rft_ieee_id=9641803&rfr_iscdi=true |