A Biomimetic Circuit for Electronic Skin With Application in Hand Prosthesis
One major challenge in upper limb prostheses is providing sensory feedback to amputees. Reproducing the spiking patterns of human primary tactile afferents can be considered as the first step for this challenging problem. In this study, a novel biomimetic circuit for SA-I and RA-I afferents is propo...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on neural systems and rehabilitation engineering 2021, Vol.29, p.2333-2344 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2344 |
---|---|
container_issue | |
container_start_page | 2333 |
container_title | IEEE transactions on neural systems and rehabilitation engineering |
container_volume | 29 |
creator | Rahiminejad, Ehsan Parvizi-Fard, Adel Iskarous, Mark M. Thakor, Nitish V. Amiri, Mahmood |
description | One major challenge in upper limb prostheses is providing sensory feedback to amputees. Reproducing the spiking patterns of human primary tactile afferents can be considered as the first step for this challenging problem. In this study, a novel biomimetic circuit for SA-I and RA-I afferents is proposed to functionally replicate the spiking response of the biological tactile afferents to indentation stimuli. The circuit has been designed, laid out, and simulated in TSMC 180nm CMOS technology with a 1.8V supply voltage. A pair of SA-I and RA-I afferent circuits consume 3.5\mu \text{W} of power. The occupied silicon area is 180\mu \text{m}\,\,\times 220\mu \text{m} for 32 afferents. To provide the inputs for circuit testing, a patch of skin with a grid of mechanoreceptors is simulated and tested by an edge stimulus presented at different orientations. Experimental data are collected using indentation of 3D-printed edges at different orientations on a tactile sensor mounted on a robotic arm. Inspired by innervation patterns observed in biology, the artificial afferents are connected to several neighboring mechanoreceptors with different weights to form complex receptive fields which cover the entire mechanoreceptor grid. Machine learning algorithms are applied offline to classify the edge orientations based on the pattern of neural responses. Our results show that the complex receptive fields arising from the innervation pattern led to smaller circuit area and lower power consumption, while facilitating data encoding from high-resolution sensors. The proposed biomimetic circuit and tactile encoding example demonstrate potential applications in modern tactile sensing modules for developing novel bio-robotic and prosthetic technologies. |
doi_str_mv | 10.1109/TNSRE.2021.3120446 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNSRE_2021_3120446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9583942</ieee_id><sourcerecordid>2596781559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-dc4be8732bf1c2e64553f5d26233481049b95104188fbfd98b6e40e66187c9533</originalsourceid><addsrcrecordid>eNpdkD1PwzAURS0EolD4A7BYYmFJ8XfssVSFIlWAaBFjlDiO6pIvbGfg3-PSioHpWVfnPj0fAK4wmmCM1N36efU2nxBE8IRighgTR-AMcy6TGKHj3ZuyhFGCRuDc-y1COBU8PQUjykRKmcJnYDmF97ZrbGOC1XBmnR5sgFXn4Lw2OriujfHq07bww4YNnPZ9bXUebNfCmC3ytoSvrvNhY7z1F-CkymtvLg9zDN4f5uvZIlm-PD7NpstE05SEpNSsMDKlpKiwJkYwzmnFSyIIpUxixFSheBxYyqqoSiULYRgyQmCZasUpHYPb_d7edV-D8SFrrNemrvPWdIPPCJeMUSoUjujNP3TbDa6N10VKiVRGXypSZE_p-BfvTJX1zja5-84wynaus1_X2c51dnAdS9f7kjXG_BUUl1QxQn8AsxV2mQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596781559</pqid></control><display><type>article</type><title>A Biomimetic Circuit for Electronic Skin With Application in Hand Prosthesis</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Rahiminejad, Ehsan ; Parvizi-Fard, Adel ; Iskarous, Mark M. ; Thakor, Nitish V. ; Amiri, Mahmood</creator><creatorcontrib>Rahiminejad, Ehsan ; Parvizi-Fard, Adel ; Iskarous, Mark M. ; Thakor, Nitish V. ; Amiri, Mahmood</creatorcontrib><description><![CDATA[One major challenge in upper limb prostheses is providing sensory feedback to amputees. Reproducing the spiking patterns of human primary tactile afferents can be considered as the first step for this challenging problem. In this study, a novel biomimetic circuit for SA-I and RA-I afferents is proposed to functionally replicate the spiking response of the biological tactile afferents to indentation stimuli. The circuit has been designed, laid out, and simulated in TSMC 180nm CMOS technology with a 1.8V supply voltage. A pair of SA-I and RA-I afferent circuits consume <inline-formula> <tex-math notation="LaTeX">3.5\mu \text{W} </tex-math></inline-formula> of power. The occupied silicon area is <inline-formula> <tex-math notation="LaTeX">180\mu \text{m}\,\,\times 220\mu \text{m} </tex-math></inline-formula> for 32 afferents. To provide the inputs for circuit testing, a patch of skin with a grid of mechanoreceptors is simulated and tested by an edge stimulus presented at different orientations. Experimental data are collected using indentation of 3D-printed edges at different orientations on a tactile sensor mounted on a robotic arm. Inspired by innervation patterns observed in biology, the artificial afferents are connected to several neighboring mechanoreceptors with different weights to form complex receptive fields which cover the entire mechanoreceptor grid. Machine learning algorithms are applied offline to classify the edge orientations based on the pattern of neural responses. Our results show that the complex receptive fields arising from the innervation pattern led to smaller circuit area and lower power consumption, while facilitating data encoding from high-resolution sensors. The proposed biomimetic circuit and tactile encoding example demonstrate potential applications in modern tactile sensing modules for developing novel bio-robotic and prosthetic technologies.]]></description><identifier>ISSN: 1534-4320</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2021.3120446</identifier><identifier>PMID: 34673491</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Biomimetics ; Circuit design ; CMOS ; CMOS implementation ; cutaneous afferents ; electronic skin ; Firing ; Firing pattern ; Indentation ; Innervation ; Learning algorithms ; Machine learning ; Mechanoreceptors ; neuromorphic circuit ; Neuromorphics ; Power consumption ; Prostheses ; Prosthetics ; Radio frequency ; Robot arms ; Robots ; Sensors ; Sensory feedback ; Sensory neurons ; Skin ; Spiking ; Tactile sensing ; Tactile sensors ; Tactile sensors (robotics) ; Three dimensional printing</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2021, Vol.29, p.2333-2344</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-dc4be8732bf1c2e64553f5d26233481049b95104188fbfd98b6e40e66187c9533</citedby><cites>FETCH-LOGICAL-c372t-dc4be8732bf1c2e64553f5d26233481049b95104188fbfd98b6e40e66187c9533</cites><orcidid>0000-0003-1720-0060 ; 0000-0003-2081-0134 ; 0000-0002-9981-9395 ; 0000-0003-4208-3943</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Rahiminejad, Ehsan</creatorcontrib><creatorcontrib>Parvizi-Fard, Adel</creatorcontrib><creatorcontrib>Iskarous, Mark M.</creatorcontrib><creatorcontrib>Thakor, Nitish V.</creatorcontrib><creatorcontrib>Amiri, Mahmood</creatorcontrib><title>A Biomimetic Circuit for Electronic Skin With Application in Hand Prosthesis</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><description><![CDATA[One major challenge in upper limb prostheses is providing sensory feedback to amputees. Reproducing the spiking patterns of human primary tactile afferents can be considered as the first step for this challenging problem. In this study, a novel biomimetic circuit for SA-I and RA-I afferents is proposed to functionally replicate the spiking response of the biological tactile afferents to indentation stimuli. The circuit has been designed, laid out, and simulated in TSMC 180nm CMOS technology with a 1.8V supply voltage. A pair of SA-I and RA-I afferent circuits consume <inline-formula> <tex-math notation="LaTeX">3.5\mu \text{W} </tex-math></inline-formula> of power. The occupied silicon area is <inline-formula> <tex-math notation="LaTeX">180\mu \text{m}\,\,\times 220\mu \text{m} </tex-math></inline-formula> for 32 afferents. To provide the inputs for circuit testing, a patch of skin with a grid of mechanoreceptors is simulated and tested by an edge stimulus presented at different orientations. Experimental data are collected using indentation of 3D-printed edges at different orientations on a tactile sensor mounted on a robotic arm. Inspired by innervation patterns observed in biology, the artificial afferents are connected to several neighboring mechanoreceptors with different weights to form complex receptive fields which cover the entire mechanoreceptor grid. Machine learning algorithms are applied offline to classify the edge orientations based on the pattern of neural responses. Our results show that the complex receptive fields arising from the innervation pattern led to smaller circuit area and lower power consumption, while facilitating data encoding from high-resolution sensors. The proposed biomimetic circuit and tactile encoding example demonstrate potential applications in modern tactile sensing modules for developing novel bio-robotic and prosthetic technologies.]]></description><subject>Algorithms</subject><subject>Biomimetics</subject><subject>Circuit design</subject><subject>CMOS</subject><subject>CMOS implementation</subject><subject>cutaneous afferents</subject><subject>electronic skin</subject><subject>Firing</subject><subject>Firing pattern</subject><subject>Indentation</subject><subject>Innervation</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Mechanoreceptors</subject><subject>neuromorphic circuit</subject><subject>Neuromorphics</subject><subject>Power consumption</subject><subject>Prostheses</subject><subject>Prosthetics</subject><subject>Radio frequency</subject><subject>Robot arms</subject><subject>Robots</subject><subject>Sensors</subject><subject>Sensory feedback</subject><subject>Sensory neurons</subject><subject>Skin</subject><subject>Spiking</subject><subject>Tactile sensing</subject><subject>Tactile sensors</subject><subject>Tactile sensors (robotics)</subject><subject>Three dimensional printing</subject><issn>1534-4320</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAURS0EolD4A7BYYmFJ8XfssVSFIlWAaBFjlDiO6pIvbGfg3-PSioHpWVfnPj0fAK4wmmCM1N36efU2nxBE8IRighgTR-AMcy6TGKHj3ZuyhFGCRuDc-y1COBU8PQUjykRKmcJnYDmF97ZrbGOC1XBmnR5sgFXn4Lw2OriujfHq07bww4YNnPZ9bXUebNfCmC3ytoSvrvNhY7z1F-CkymtvLg9zDN4f5uvZIlm-PD7NpstE05SEpNSsMDKlpKiwJkYwzmnFSyIIpUxixFSheBxYyqqoSiULYRgyQmCZasUpHYPb_d7edV-D8SFrrNemrvPWdIPPCJeMUSoUjujNP3TbDa6N10VKiVRGXypSZE_p-BfvTJX1zja5-84wynaus1_X2c51dnAdS9f7kjXG_BUUl1QxQn8AsxV2mQ</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Rahiminejad, Ehsan</creator><creator>Parvizi-Fard, Adel</creator><creator>Iskarous, Mark M.</creator><creator>Thakor, Nitish V.</creator><creator>Amiri, Mahmood</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1720-0060</orcidid><orcidid>https://orcid.org/0000-0003-2081-0134</orcidid><orcidid>https://orcid.org/0000-0002-9981-9395</orcidid><orcidid>https://orcid.org/0000-0003-4208-3943</orcidid></search><sort><creationdate>2021</creationdate><title>A Biomimetic Circuit for Electronic Skin With Application in Hand Prosthesis</title><author>Rahiminejad, Ehsan ; Parvizi-Fard, Adel ; Iskarous, Mark M. ; Thakor, Nitish V. ; Amiri, Mahmood</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-dc4be8732bf1c2e64553f5d26233481049b95104188fbfd98b6e40e66187c9533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Biomimetics</topic><topic>Circuit design</topic><topic>CMOS</topic><topic>CMOS implementation</topic><topic>cutaneous afferents</topic><topic>electronic skin</topic><topic>Firing</topic><topic>Firing pattern</topic><topic>Indentation</topic><topic>Innervation</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Mechanoreceptors</topic><topic>neuromorphic circuit</topic><topic>Neuromorphics</topic><topic>Power consumption</topic><topic>Prostheses</topic><topic>Prosthetics</topic><topic>Radio frequency</topic><topic>Robot arms</topic><topic>Robots</topic><topic>Sensors</topic><topic>Sensory feedback</topic><topic>Sensory neurons</topic><topic>Skin</topic><topic>Spiking</topic><topic>Tactile sensing</topic><topic>Tactile sensors</topic><topic>Tactile sensors (robotics)</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahiminejad, Ehsan</creatorcontrib><creatorcontrib>Parvizi-Fard, Adel</creatorcontrib><creatorcontrib>Iskarous, Mark M.</creatorcontrib><creatorcontrib>Thakor, Nitish V.</creatorcontrib><creatorcontrib>Amiri, Mahmood</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahiminejad, Ehsan</au><au>Parvizi-Fard, Adel</au><au>Iskarous, Mark M.</au><au>Thakor, Nitish V.</au><au>Amiri, Mahmood</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Biomimetic Circuit for Electronic Skin With Application in Hand Prosthesis</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><date>2021</date><risdate>2021</risdate><volume>29</volume><spage>2333</spage><epage>2344</epage><pages>2333-2344</pages><issn>1534-4320</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract><![CDATA[One major challenge in upper limb prostheses is providing sensory feedback to amputees. Reproducing the spiking patterns of human primary tactile afferents can be considered as the first step for this challenging problem. In this study, a novel biomimetic circuit for SA-I and RA-I afferents is proposed to functionally replicate the spiking response of the biological tactile afferents to indentation stimuli. The circuit has been designed, laid out, and simulated in TSMC 180nm CMOS technology with a 1.8V supply voltage. A pair of SA-I and RA-I afferent circuits consume <inline-formula> <tex-math notation="LaTeX">3.5\mu \text{W} </tex-math></inline-formula> of power. The occupied silicon area is <inline-formula> <tex-math notation="LaTeX">180\mu \text{m}\,\,\times 220\mu \text{m} </tex-math></inline-formula> for 32 afferents. To provide the inputs for circuit testing, a patch of skin with a grid of mechanoreceptors is simulated and tested by an edge stimulus presented at different orientations. Experimental data are collected using indentation of 3D-printed edges at different orientations on a tactile sensor mounted on a robotic arm. Inspired by innervation patterns observed in biology, the artificial afferents are connected to several neighboring mechanoreceptors with different weights to form complex receptive fields which cover the entire mechanoreceptor grid. Machine learning algorithms are applied offline to classify the edge orientations based on the pattern of neural responses. Our results show that the complex receptive fields arising from the innervation pattern led to smaller circuit area and lower power consumption, while facilitating data encoding from high-resolution sensors. The proposed biomimetic circuit and tactile encoding example demonstrate potential applications in modern tactile sensing modules for developing novel bio-robotic and prosthetic technologies.]]></abstract><cop>New York</cop><pub>IEEE</pub><pmid>34673491</pmid><doi>10.1109/TNSRE.2021.3120446</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1720-0060</orcidid><orcidid>https://orcid.org/0000-0003-2081-0134</orcidid><orcidid>https://orcid.org/0000-0002-9981-9395</orcidid><orcidid>https://orcid.org/0000-0003-4208-3943</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1534-4320 |
ispartof | IEEE transactions on neural systems and rehabilitation engineering, 2021, Vol.29, p.2333-2344 |
issn | 1534-4320 1558-0210 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TNSRE_2021_3120446 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Biomimetics Circuit design CMOS CMOS implementation cutaneous afferents electronic skin Firing Firing pattern Indentation Innervation Learning algorithms Machine learning Mechanoreceptors neuromorphic circuit Neuromorphics Power consumption Prostheses Prosthetics Radio frequency Robot arms Robots Sensors Sensory feedback Sensory neurons Skin Spiking Tactile sensing Tactile sensors Tactile sensors (robotics) Three dimensional printing |
title | A Biomimetic Circuit for Electronic Skin With Application in Hand Prosthesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A39%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Biomimetic%20Circuit%20for%20Electronic%20Skin%20With%20Application%20in%20Hand%20Prosthesis&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Rahiminejad,%20Ehsan&rft.date=2021&rft.volume=29&rft.spage=2333&rft.epage=2344&rft.pages=2333-2344&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2021.3120446&rft_dat=%3Cproquest_cross%3E2596781559%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596781559&rft_id=info:pmid/34673491&rft_ieee_id=9583942&rfr_iscdi=true |