A Voting-Enhanced Dynamic-Window-Length Classifier for SSVEP-Based BCIs

We present a dynamic window-length classifier for steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) that does not require the user to choose a feature extraction method or channel set. Instead, the classifier uses multiple feature extraction methods and channel sele...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on neural systems and rehabilitation engineering 2021, Vol.29, p.1766-1773
Hauptverfasser: Habibzadeh, Hadi, Norton, James J. S., Vaughan, Theresa M., Soyata, Tolga, Zois, Daphney-Stavroula
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1773
container_issue
container_start_page 1766
container_title IEEE transactions on neural systems and rehabilitation engineering
container_volume 29
creator Habibzadeh, Hadi
Norton, James J. S.
Vaughan, Theresa M.
Soyata, Tolga
Zois, Daphney-Stavroula
description We present a dynamic window-length classifier for steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) that does not require the user to choose a feature extraction method or channel set. Instead, the classifier uses multiple feature extraction methods and channel selections to infer the SSVEP and relies on majority voting to pick the most likely target. The classifier extends the window length dynamically if no target obtains the majority of votes. Compared with existing solutions, our classifier: (i) does not assume that any single feature extraction method will consistently outperform the others; (ii) adapts the channel selection to individual users or tasks; (iii) uses dynamic window lengths; (iv) is unsupervised (i.e., does not need training). Collectively, these characteristics make the classifier easy-to-use, especially for caregivers and others with limited technical expertise. We evaluated the performance of our classifier on a publicly available benchmark dataset from 35 healthy participants. We compared the information transfer rate (ITR) of this new classifier to those of the minimum energy combination (MEC), maximum synchronization index (MSI), and filter bank canonical correlation analysis (FBCCA). The new classifier increases average ITR to 123.5 bits-per-minute (bpm), 47.5, 51.2, and 19.5 bpm greater than the MEC, MSI, and FBCCA classifiers, respectively.
doi_str_mv 10.1109/TNSRE.2021.3106876
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNSRE_2021_3106876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9521251</ieee_id><sourcerecordid>2570206802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-519e5f9e71cc330aece4686eb373df7293d6a4d4ce8f5603a3c2d682c8895a1a3</originalsourceid><addsrcrecordid>eNpdkUtvUzEQhS1ERV_8AdhciQ2bG_x-bJDaEEqlCFBTytJyfecmrm7s1r4p6r_HIVGlsprR-DtH4zkIvSN4Qgg2n66_L65mE4opmTCCpVbyFToiQui2jvDrbc94yxnFh-i4lDuMiZJCvUGHjHOqCSdH6OKsuUljiMt2FlcueuiaL0_RrYNvf4fYpT_tHOJyXDXTwZUS-gC56VNuFoub2c_23JUqOJ9ellN00LuhwNt9PUG_vs6up9_a-Y-Ly-nZvPWcqrEVxIDoDSjiPWPYgQcutYRbpljXK2pYJx3vuAfdC4mZY552UlOvtRGOOHaCPu987ze3a-g8xDG7wd7nsHb5ySYX7MuXGFZ2mR6t5kYqwavBx71BTg8bKKNdh-JhGFyEtCmWCsm5UYbpin74D71Lmxzr9yqlMK0nx7RSdEf5nErJ0D8vQ7Dd5mT_5WS3Odl9TlX0ficKAPAsMIISKgj7C49QjA0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2570206802</pqid></control><display><type>article</type><title>A Voting-Enhanced Dynamic-Window-Length Classifier for SSVEP-Based BCIs</title><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Habibzadeh, Hadi ; Norton, James J. S. ; Vaughan, Theresa M. ; Soyata, Tolga ; Zois, Daphney-Stavroula</creator><creatorcontrib>Habibzadeh, Hadi ; Norton, James J. S. ; Vaughan, Theresa M. ; Soyata, Tolga ; Zois, Daphney-Stavroula</creatorcontrib><description>We present a dynamic window-length classifier for steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) that does not require the user to choose a feature extraction method or channel set. Instead, the classifier uses multiple feature extraction methods and channel selections to infer the SSVEP and relies on majority voting to pick the most likely target. The classifier extends the window length dynamically if no target obtains the majority of votes. Compared with existing solutions, our classifier: (i) does not assume that any single feature extraction method will consistently outperform the others; (ii) adapts the channel selection to individual users or tasks; (iii) uses dynamic window lengths; (iv) is unsupervised (i.e., does not need training). Collectively, these characteristics make the classifier easy-to-use, especially for caregivers and others with limited technical expertise. We evaluated the performance of our classifier on a publicly available benchmark dataset from 35 healthy participants. We compared the information transfer rate (ITR) of this new classifier to those of the minimum energy combination (MEC), maximum synchronization index (MSI), and filter bank canonical correlation analysis (FBCCA). The new classifier increases average ITR to 123.5 bits-per-minute (bpm), 47.5, 51.2, and 19.5 bpm greater than the MEC, MSI, and FBCCA classifiers, respectively.</description><identifier>ISSN: 1534-4320</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2021.3106876</identifier><identifier>PMID: 34428141</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Biomedical imaging ; Brain-computer interface ; Classifiers ; Correlation analysis ; Delays ; Electrodes ; Electroencephalography ; Feature extraction ; filter bank canonical correlation analysis ; Filter banks ; Human-computer interface ; Indexes ; Information transfer ; Interfaces ; maximum synchronization index ; minimum energy combination ; Neurotechnology ; steady-state visual evoked potentials ; Synchronism ; Synchronization ; Visual evoked potentials</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2021, Vol.29, p.1766-1773</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-519e5f9e71cc330aece4686eb373df7293d6a4d4ce8f5603a3c2d682c8895a1a3</citedby><cites>FETCH-LOGICAL-c427t-519e5f9e71cc330aece4686eb373df7293d6a4d4ce8f5603a3c2d682c8895a1a3</cites><orcidid>0000-0003-1506-8641 ; 0000-0001-9839-8798 ; 0000-0002-7807-7142</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,860,881,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Habibzadeh, Hadi</creatorcontrib><creatorcontrib>Norton, James J. S.</creatorcontrib><creatorcontrib>Vaughan, Theresa M.</creatorcontrib><creatorcontrib>Soyata, Tolga</creatorcontrib><creatorcontrib>Zois, Daphney-Stavroula</creatorcontrib><title>A Voting-Enhanced Dynamic-Window-Length Classifier for SSVEP-Based BCIs</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><description>We present a dynamic window-length classifier for steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) that does not require the user to choose a feature extraction method or channel set. Instead, the classifier uses multiple feature extraction methods and channel selections to infer the SSVEP and relies on majority voting to pick the most likely target. The classifier extends the window length dynamically if no target obtains the majority of votes. Compared with existing solutions, our classifier: (i) does not assume that any single feature extraction method will consistently outperform the others; (ii) adapts the channel selection to individual users or tasks; (iii) uses dynamic window lengths; (iv) is unsupervised (i.e., does not need training). Collectively, these characteristics make the classifier easy-to-use, especially for caregivers and others with limited technical expertise. We evaluated the performance of our classifier on a publicly available benchmark dataset from 35 healthy participants. We compared the information transfer rate (ITR) of this new classifier to those of the minimum energy combination (MEC), maximum synchronization index (MSI), and filter bank canonical correlation analysis (FBCCA). The new classifier increases average ITR to 123.5 bits-per-minute (bpm), 47.5, 51.2, and 19.5 bpm greater than the MEC, MSI, and FBCCA classifiers, respectively.</description><subject>Biomedical imaging</subject><subject>Brain-computer interface</subject><subject>Classifiers</subject><subject>Correlation analysis</subject><subject>Delays</subject><subject>Electrodes</subject><subject>Electroencephalography</subject><subject>Feature extraction</subject><subject>filter bank canonical correlation analysis</subject><subject>Filter banks</subject><subject>Human-computer interface</subject><subject>Indexes</subject><subject>Information transfer</subject><subject>Interfaces</subject><subject>maximum synchronization index</subject><subject>minimum energy combination</subject><subject>Neurotechnology</subject><subject>steady-state visual evoked potentials</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Visual evoked potentials</subject><issn>1534-4320</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpdkUtvUzEQhS1ERV_8AdhciQ2bG_x-bJDaEEqlCFBTytJyfecmrm7s1r4p6r_HIVGlsprR-DtH4zkIvSN4Qgg2n66_L65mE4opmTCCpVbyFToiQui2jvDrbc94yxnFh-i4lDuMiZJCvUGHjHOqCSdH6OKsuUljiMt2FlcueuiaL0_RrYNvf4fYpT_tHOJyXDXTwZUS-gC56VNuFoub2c_23JUqOJ9ellN00LuhwNt9PUG_vs6up9_a-Y-Ly-nZvPWcqrEVxIDoDSjiPWPYgQcutYRbpljXK2pYJx3vuAfdC4mZY552UlOvtRGOOHaCPu987ze3a-g8xDG7wd7nsHb5ySYX7MuXGFZ2mR6t5kYqwavBx71BTg8bKKNdh-JhGFyEtCmWCsm5UYbpin74D71Lmxzr9yqlMK0nx7RSdEf5nErJ0D8vQ7Dd5mT_5WS3Odl9TlX0ficKAPAsMIISKgj7C49QjA0</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Habibzadeh, Hadi</creator><creator>Norton, James J. S.</creator><creator>Vaughan, Theresa M.</creator><creator>Soyata, Tolga</creator><creator>Zois, Daphney-Stavroula</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1506-8641</orcidid><orcidid>https://orcid.org/0000-0001-9839-8798</orcidid><orcidid>https://orcid.org/0000-0002-7807-7142</orcidid></search><sort><creationdate>2021</creationdate><title>A Voting-Enhanced Dynamic-Window-Length Classifier for SSVEP-Based BCIs</title><author>Habibzadeh, Hadi ; Norton, James J. S. ; Vaughan, Theresa M. ; Soyata, Tolga ; Zois, Daphney-Stavroula</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-519e5f9e71cc330aece4686eb373df7293d6a4d4ce8f5603a3c2d682c8895a1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomedical imaging</topic><topic>Brain-computer interface</topic><topic>Classifiers</topic><topic>Correlation analysis</topic><topic>Delays</topic><topic>Electrodes</topic><topic>Electroencephalography</topic><topic>Feature extraction</topic><topic>filter bank canonical correlation analysis</topic><topic>Filter banks</topic><topic>Human-computer interface</topic><topic>Indexes</topic><topic>Information transfer</topic><topic>Interfaces</topic><topic>maximum synchronization index</topic><topic>minimum energy combination</topic><topic>Neurotechnology</topic><topic>steady-state visual evoked potentials</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Visual evoked potentials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Habibzadeh, Hadi</creatorcontrib><creatorcontrib>Norton, James J. S.</creatorcontrib><creatorcontrib>Vaughan, Theresa M.</creatorcontrib><creatorcontrib>Soyata, Tolga</creatorcontrib><creatorcontrib>Zois, Daphney-Stavroula</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Habibzadeh, Hadi</au><au>Norton, James J. S.</au><au>Vaughan, Theresa M.</au><au>Soyata, Tolga</au><au>Zois, Daphney-Stavroula</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Voting-Enhanced Dynamic-Window-Length Classifier for SSVEP-Based BCIs</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><date>2021</date><risdate>2021</risdate><volume>29</volume><spage>1766</spage><epage>1773</epage><pages>1766-1773</pages><issn>1534-4320</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>We present a dynamic window-length classifier for steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) that does not require the user to choose a feature extraction method or channel set. Instead, the classifier uses multiple feature extraction methods and channel selections to infer the SSVEP and relies on majority voting to pick the most likely target. The classifier extends the window length dynamically if no target obtains the majority of votes. Compared with existing solutions, our classifier: (i) does not assume that any single feature extraction method will consistently outperform the others; (ii) adapts the channel selection to individual users or tasks; (iii) uses dynamic window lengths; (iv) is unsupervised (i.e., does not need training). Collectively, these characteristics make the classifier easy-to-use, especially for caregivers and others with limited technical expertise. We evaluated the performance of our classifier on a publicly available benchmark dataset from 35 healthy participants. We compared the information transfer rate (ITR) of this new classifier to those of the minimum energy combination (MEC), maximum synchronization index (MSI), and filter bank canonical correlation analysis (FBCCA). The new classifier increases average ITR to 123.5 bits-per-minute (bpm), 47.5, 51.2, and 19.5 bpm greater than the MEC, MSI, and FBCCA classifiers, respectively.</abstract><cop>New York</cop><pub>IEEE</pub><pmid>34428141</pmid><doi>10.1109/TNSRE.2021.3106876</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1506-8641</orcidid><orcidid>https://orcid.org/0000-0001-9839-8798</orcidid><orcidid>https://orcid.org/0000-0002-7807-7142</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1534-4320
ispartof IEEE transactions on neural systems and rehabilitation engineering, 2021, Vol.29, p.1766-1773
issn 1534-4320
1558-0210
language eng
recordid cdi_crossref_primary_10_1109_TNSRE_2021_3106876
source DOAJ Directory of Open Access Journals; EZB Electronic Journals Library
subjects Biomedical imaging
Brain-computer interface
Classifiers
Correlation analysis
Delays
Electrodes
Electroencephalography
Feature extraction
filter bank canonical correlation analysis
Filter banks
Human-computer interface
Indexes
Information transfer
Interfaces
maximum synchronization index
minimum energy combination
Neurotechnology
steady-state visual evoked potentials
Synchronism
Synchronization
Visual evoked potentials
title A Voting-Enhanced Dynamic-Window-Length Classifier for SSVEP-Based BCIs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T09%3A09%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Voting-Enhanced%20Dynamic-Window-Length%20Classifier%20for%20SSVEP-Based%20BCIs&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Habibzadeh,%20Hadi&rft.date=2021&rft.volume=29&rft.spage=1766&rft.epage=1773&rft.pages=1766-1773&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2021.3106876&rft_dat=%3Cproquest_cross%3E2570206802%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2570206802&rft_id=info:pmid/34428141&rft_ieee_id=9521251&rfr_iscdi=true