DPU-Enhanced Multi-Agent Actor-Critic Algorithm for Cross-Domain Resource Scheduling in Computing Power Network

The distribution of computing resources in the Computing Power Network (CPN) is uneven, leading to an imbalance in resource supply and demand within domains, necessitating cross-domain resource scheduling. To address the cross-domain resource scheduling challenge in CPN, this paper presents an Impro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE eTransactions on network and service management 2024-12, Vol.21 (6), p.6008-6025
Hauptverfasser: Wang, Shuaichao, Guo, Shaoyong, Hao, Jiakai, Ren, Yinlin, Qi, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6025
container_issue 6
container_start_page 6008
container_title IEEE eTransactions on network and service management
container_volume 21
creator Wang, Shuaichao
Guo, Shaoyong
Hao, Jiakai
Ren, Yinlin
Qi, Feng
description The distribution of computing resources in the Computing Power Network (CPN) is uneven, leading to an imbalance in resource supply and demand within domains, necessitating cross-domain resource scheduling. To address the cross-domain resource scheduling challenge in CPN, this paper presents an Improved Multi-Agent Actor-Critic (IMAAC) resource scheduling approach leveraging Data Processing Unit (DPU) offloading. Initially, we introduce a cross-domain resource scheduling architecture tailored for CPN by leveraging DPU offloading. Specifically, we delegate certain functionalities of the Multi-Agent Deep Reinforcement Learning (MADRL) Agent to DPUs, aiming to mitigate communication costs incurred during the generation of cross-domain scheduling decisions. Second, we introduce the parallel experience ensemble and multi-head attention mechanism in the Multi-Agent Actor-Critic (MAAC) framework to compress the state-space dimensionality of agent association across domains. Finally, we introduce the parallelized dual-policy network structure to mitigate training instability and convergence challenges within the actor and critic networks. Experimental results showcase that IMAAC achieves noteworthy reductions of 5.98%~13.56%, 23.54%~33.55%, and 41.17%~58.88% in total system delay, energy consumption, and the number of discarded tasks, respectively, compared to benchmark experiments.
doi_str_mv 10.1109/TNSM.2024.3434997
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNSM_2024_3434997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10613001</ieee_id><sourcerecordid>10_1109_TNSM_2024_3434997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c631-9c9726c40728c140db0f71fcbbf90cf507f6cfd20079e3a92651e4c3fe19ddb03</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhC0EEqXwAEgc_AIuazuJ62OUlh-pLRUt5yh11m0giSsnUcXbk4geetrZ1cxq9BHyyGHCOejn7WqznAgQwUQGMtBaXZER11KwIJTq-kLfkrum-QYIp1yLEXGz9Reb14esNpjTZVe2BYv3WLc0Nq3zLPFFWxgal3vXq0NFrfM08a5p2MxVWVHTT2xc5w3SjTlg3pVFvaf9OXHVsWuHZe1O6OkK25PzP_fkxmZlgw_nOSbbl_k2eWOLj9f3JF4wE0nOtNFKRCYAJaaGB5DvwCpuzW5nNRgbgrKRsbkAUBplpkUUcgyMtMh13pvlmPD_t2ao6tGmR19Umf9NOaQDsHQAlg7A0jOwPvP0nykQ8cIfcQnA5R-tvGjE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>DPU-Enhanced Multi-Agent Actor-Critic Algorithm for Cross-Domain Resource Scheduling in Computing Power Network</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Shuaichao ; Guo, Shaoyong ; Hao, Jiakai ; Ren, Yinlin ; Qi, Feng</creator><creatorcontrib>Wang, Shuaichao ; Guo, Shaoyong ; Hao, Jiakai ; Ren, Yinlin ; Qi, Feng</creatorcontrib><description>The distribution of computing resources in the Computing Power Network (CPN) is uneven, leading to an imbalance in resource supply and demand within domains, necessitating cross-domain resource scheduling. To address the cross-domain resource scheduling challenge in CPN, this paper presents an Improved Multi-Agent Actor-Critic (IMAAC) resource scheduling approach leveraging Data Processing Unit (DPU) offloading. Initially, we introduce a cross-domain resource scheduling architecture tailored for CPN by leveraging DPU offloading. Specifically, we delegate certain functionalities of the Multi-Agent Deep Reinforcement Learning (MADRL) Agent to DPUs, aiming to mitigate communication costs incurred during the generation of cross-domain scheduling decisions. Second, we introduce the parallel experience ensemble and multi-head attention mechanism in the Multi-Agent Actor-Critic (MAAC) framework to compress the state-space dimensionality of agent association across domains. Finally, we introduce the parallelized dual-policy network structure to mitigate training instability and convergence challenges within the actor and critic networks. Experimental results showcase that IMAAC achieves noteworthy reductions of 5.98%~13.56%, 23.54%~33.55%, and 41.17%~58.88% in total system delay, energy consumption, and the number of discarded tasks, respectively, compared to benchmark experiments.</description><identifier>ISSN: 1932-4537</identifier><identifier>EISSN: 1932-4537</identifier><identifier>DOI: 10.1109/TNSM.2024.3434997</identifier><identifier>CODEN: ITNSC4</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer architecture ; computing power network ; Convergence ; Costs ; Delays ; DPU ; Heuristic algorithms ; multi-agent actor-critic ; resource scheduling ; Scheduling algorithms ; Task analysis</subject><ispartof>IEEE eTransactions on network and service management, 2024-12, Vol.21 (6), p.6008-6025</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2033-8431 ; 0000-0001-5658-7734 ; 0000-0003-2481-8774 ; 0009-0005-3398-7555</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10613001$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10613001$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Shuaichao</creatorcontrib><creatorcontrib>Guo, Shaoyong</creatorcontrib><creatorcontrib>Hao, Jiakai</creatorcontrib><creatorcontrib>Ren, Yinlin</creatorcontrib><creatorcontrib>Qi, Feng</creatorcontrib><title>DPU-Enhanced Multi-Agent Actor-Critic Algorithm for Cross-Domain Resource Scheduling in Computing Power Network</title><title>IEEE eTransactions on network and service management</title><addtitle>T-NSM</addtitle><description>The distribution of computing resources in the Computing Power Network (CPN) is uneven, leading to an imbalance in resource supply and demand within domains, necessitating cross-domain resource scheduling. To address the cross-domain resource scheduling challenge in CPN, this paper presents an Improved Multi-Agent Actor-Critic (IMAAC) resource scheduling approach leveraging Data Processing Unit (DPU) offloading. Initially, we introduce a cross-domain resource scheduling architecture tailored for CPN by leveraging DPU offloading. Specifically, we delegate certain functionalities of the Multi-Agent Deep Reinforcement Learning (MADRL) Agent to DPUs, aiming to mitigate communication costs incurred during the generation of cross-domain scheduling decisions. Second, we introduce the parallel experience ensemble and multi-head attention mechanism in the Multi-Agent Actor-Critic (MAAC) framework to compress the state-space dimensionality of agent association across domains. Finally, we introduce the parallelized dual-policy network structure to mitigate training instability and convergence challenges within the actor and critic networks. Experimental results showcase that IMAAC achieves noteworthy reductions of 5.98%~13.56%, 23.54%~33.55%, and 41.17%~58.88% in total system delay, energy consumption, and the number of discarded tasks, respectively, compared to benchmark experiments.</description><subject>Computer architecture</subject><subject>computing power network</subject><subject>Convergence</subject><subject>Costs</subject><subject>Delays</subject><subject>DPU</subject><subject>Heuristic algorithms</subject><subject>multi-agent actor-critic</subject><subject>resource scheduling</subject><subject>Scheduling algorithms</subject><subject>Task analysis</subject><issn>1932-4537</issn><issn>1932-4537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1OwzAQhC0EEqXwAEgc_AIuazuJ62OUlh-pLRUt5yh11m0giSsnUcXbk4geetrZ1cxq9BHyyGHCOejn7WqznAgQwUQGMtBaXZER11KwIJTq-kLfkrum-QYIp1yLEXGz9Reb14esNpjTZVe2BYv3WLc0Nq3zLPFFWxgal3vXq0NFrfM08a5p2MxVWVHTT2xc5w3SjTlg3pVFvaf9OXHVsWuHZe1O6OkK25PzP_fkxmZlgw_nOSbbl_k2eWOLj9f3JF4wE0nOtNFKRCYAJaaGB5DvwCpuzW5nNRgbgrKRsbkAUBplpkUUcgyMtMh13pvlmPD_t2ao6tGmR19Umf9NOaQDsHQAlg7A0jOwPvP0nykQ8cIfcQnA5R-tvGjE</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Wang, Shuaichao</creator><creator>Guo, Shaoyong</creator><creator>Hao, Jiakai</creator><creator>Ren, Yinlin</creator><creator>Qi, Feng</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2033-8431</orcidid><orcidid>https://orcid.org/0000-0001-5658-7734</orcidid><orcidid>https://orcid.org/0000-0003-2481-8774</orcidid><orcidid>https://orcid.org/0009-0005-3398-7555</orcidid></search><sort><creationdate>202412</creationdate><title>DPU-Enhanced Multi-Agent Actor-Critic Algorithm for Cross-Domain Resource Scheduling in Computing Power Network</title><author>Wang, Shuaichao ; Guo, Shaoyong ; Hao, Jiakai ; Ren, Yinlin ; Qi, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c631-9c9726c40728c140db0f71fcbbf90cf507f6cfd20079e3a92651e4c3fe19ddb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computer architecture</topic><topic>computing power network</topic><topic>Convergence</topic><topic>Costs</topic><topic>Delays</topic><topic>DPU</topic><topic>Heuristic algorithms</topic><topic>multi-agent actor-critic</topic><topic>resource scheduling</topic><topic>Scheduling algorithms</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shuaichao</creatorcontrib><creatorcontrib>Guo, Shaoyong</creatorcontrib><creatorcontrib>Hao, Jiakai</creatorcontrib><creatorcontrib>Ren, Yinlin</creatorcontrib><creatorcontrib>Qi, Feng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE eTransactions on network and service management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Shuaichao</au><au>Guo, Shaoyong</au><au>Hao, Jiakai</au><au>Ren, Yinlin</au><au>Qi, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DPU-Enhanced Multi-Agent Actor-Critic Algorithm for Cross-Domain Resource Scheduling in Computing Power Network</atitle><jtitle>IEEE eTransactions on network and service management</jtitle><stitle>T-NSM</stitle><date>2024-12</date><risdate>2024</risdate><volume>21</volume><issue>6</issue><spage>6008</spage><epage>6025</epage><pages>6008-6025</pages><issn>1932-4537</issn><eissn>1932-4537</eissn><coden>ITNSC4</coden><abstract>The distribution of computing resources in the Computing Power Network (CPN) is uneven, leading to an imbalance in resource supply and demand within domains, necessitating cross-domain resource scheduling. To address the cross-domain resource scheduling challenge in CPN, this paper presents an Improved Multi-Agent Actor-Critic (IMAAC) resource scheduling approach leveraging Data Processing Unit (DPU) offloading. Initially, we introduce a cross-domain resource scheduling architecture tailored for CPN by leveraging DPU offloading. Specifically, we delegate certain functionalities of the Multi-Agent Deep Reinforcement Learning (MADRL) Agent to DPUs, aiming to mitigate communication costs incurred during the generation of cross-domain scheduling decisions. Second, we introduce the parallel experience ensemble and multi-head attention mechanism in the Multi-Agent Actor-Critic (MAAC) framework to compress the state-space dimensionality of agent association across domains. Finally, we introduce the parallelized dual-policy network structure to mitigate training instability and convergence challenges within the actor and critic networks. Experimental results showcase that IMAAC achieves noteworthy reductions of 5.98%~13.56%, 23.54%~33.55%, and 41.17%~58.88% in total system delay, energy consumption, and the number of discarded tasks, respectively, compared to benchmark experiments.</abstract><pub>IEEE</pub><doi>10.1109/TNSM.2024.3434997</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-2033-8431</orcidid><orcidid>https://orcid.org/0000-0001-5658-7734</orcidid><orcidid>https://orcid.org/0000-0003-2481-8774</orcidid><orcidid>https://orcid.org/0009-0005-3398-7555</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4537
ispartof IEEE eTransactions on network and service management, 2024-12, Vol.21 (6), p.6008-6025
issn 1932-4537
1932-4537
language eng
recordid cdi_crossref_primary_10_1109_TNSM_2024_3434997
source IEEE Electronic Library (IEL)
subjects Computer architecture
computing power network
Convergence
Costs
Delays
DPU
Heuristic algorithms
multi-agent actor-critic
resource scheduling
Scheduling algorithms
Task analysis
title DPU-Enhanced Multi-Agent Actor-Critic Algorithm for Cross-Domain Resource Scheduling in Computing Power Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A33%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DPU-Enhanced%20Multi-Agent%20Actor-Critic%20Algorithm%20for%20Cross-Domain%20Resource%20Scheduling%20in%20Computing%20Power%20Network&rft.jtitle=IEEE%20eTransactions%20on%20network%20and%20service%20management&rft.au=Wang,%20Shuaichao&rft.date=2024-12&rft.volume=21&rft.issue=6&rft.spage=6008&rft.epage=6025&rft.pages=6008-6025&rft.issn=1932-4537&rft.eissn=1932-4537&rft.coden=ITNSC4&rft_id=info:doi/10.1109/TNSM.2024.3434997&rft_dat=%3Ccrossref_RIE%3E10_1109_TNSM_2024_3434997%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10613001&rfr_iscdi=true