DPU-Enhanced Multi-Agent Actor-Critic Algorithm for Cross-Domain Resource Scheduling in Computing Power Network
The distribution of computing resources in the Computing Power Network (CPN) is uneven, leading to an imbalance in resource supply and demand within domains, necessitating cross-domain resource scheduling. To address the cross-domain resource scheduling challenge in CPN, this paper presents an Impro...
Gespeichert in:
Veröffentlicht in: | IEEE eTransactions on network and service management 2024-12, Vol.21 (6), p.6008-6025 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6025 |
---|---|
container_issue | 6 |
container_start_page | 6008 |
container_title | IEEE eTransactions on network and service management |
container_volume | 21 |
creator | Wang, Shuaichao Guo, Shaoyong Hao, Jiakai Ren, Yinlin Qi, Feng |
description | The distribution of computing resources in the Computing Power Network (CPN) is uneven, leading to an imbalance in resource supply and demand within domains, necessitating cross-domain resource scheduling. To address the cross-domain resource scheduling challenge in CPN, this paper presents an Improved Multi-Agent Actor-Critic (IMAAC) resource scheduling approach leveraging Data Processing Unit (DPU) offloading. Initially, we introduce a cross-domain resource scheduling architecture tailored for CPN by leveraging DPU offloading. Specifically, we delegate certain functionalities of the Multi-Agent Deep Reinforcement Learning (MADRL) Agent to DPUs, aiming to mitigate communication costs incurred during the generation of cross-domain scheduling decisions. Second, we introduce the parallel experience ensemble and multi-head attention mechanism in the Multi-Agent Actor-Critic (MAAC) framework to compress the state-space dimensionality of agent association across domains. Finally, we introduce the parallelized dual-policy network structure to mitigate training instability and convergence challenges within the actor and critic networks. Experimental results showcase that IMAAC achieves noteworthy reductions of 5.98%~13.56%, 23.54%~33.55%, and 41.17%~58.88% in total system delay, energy consumption, and the number of discarded tasks, respectively, compared to benchmark experiments. |
doi_str_mv | 10.1109/TNSM.2024.3434997 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNSM_2024_3434997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10613001</ieee_id><sourcerecordid>10_1109_TNSM_2024_3434997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c631-9c9726c40728c140db0f71fcbbf90cf507f6cfd20079e3a92651e4c3fe19ddb03</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhC0EEqXwAEgc_AIuazuJ62OUlh-pLRUt5yh11m0giSsnUcXbk4geetrZ1cxq9BHyyGHCOejn7WqznAgQwUQGMtBaXZER11KwIJTq-kLfkrum-QYIp1yLEXGz9Reb14esNpjTZVe2BYv3WLc0Nq3zLPFFWxgal3vXq0NFrfM08a5p2MxVWVHTT2xc5w3SjTlg3pVFvaf9OXHVsWuHZe1O6OkK25PzP_fkxmZlgw_nOSbbl_k2eWOLj9f3JF4wE0nOtNFKRCYAJaaGB5DvwCpuzW5nNRgbgrKRsbkAUBplpkUUcgyMtMh13pvlmPD_t2ao6tGmR19Umf9NOaQDsHQAlg7A0jOwPvP0nykQ8cIfcQnA5R-tvGjE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>DPU-Enhanced Multi-Agent Actor-Critic Algorithm for Cross-Domain Resource Scheduling in Computing Power Network</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Shuaichao ; Guo, Shaoyong ; Hao, Jiakai ; Ren, Yinlin ; Qi, Feng</creator><creatorcontrib>Wang, Shuaichao ; Guo, Shaoyong ; Hao, Jiakai ; Ren, Yinlin ; Qi, Feng</creatorcontrib><description>The distribution of computing resources in the Computing Power Network (CPN) is uneven, leading to an imbalance in resource supply and demand within domains, necessitating cross-domain resource scheduling. To address the cross-domain resource scheduling challenge in CPN, this paper presents an Improved Multi-Agent Actor-Critic (IMAAC) resource scheduling approach leveraging Data Processing Unit (DPU) offloading. Initially, we introduce a cross-domain resource scheduling architecture tailored for CPN by leveraging DPU offloading. Specifically, we delegate certain functionalities of the Multi-Agent Deep Reinforcement Learning (MADRL) Agent to DPUs, aiming to mitigate communication costs incurred during the generation of cross-domain scheduling decisions. Second, we introduce the parallel experience ensemble and multi-head attention mechanism in the Multi-Agent Actor-Critic (MAAC) framework to compress the state-space dimensionality of agent association across domains. Finally, we introduce the parallelized dual-policy network structure to mitigate training instability and convergence challenges within the actor and critic networks. Experimental results showcase that IMAAC achieves noteworthy reductions of 5.98%~13.56%, 23.54%~33.55%, and 41.17%~58.88% in total system delay, energy consumption, and the number of discarded tasks, respectively, compared to benchmark experiments.</description><identifier>ISSN: 1932-4537</identifier><identifier>EISSN: 1932-4537</identifier><identifier>DOI: 10.1109/TNSM.2024.3434997</identifier><identifier>CODEN: ITNSC4</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer architecture ; computing power network ; Convergence ; Costs ; Delays ; DPU ; Heuristic algorithms ; multi-agent actor-critic ; resource scheduling ; Scheduling algorithms ; Task analysis</subject><ispartof>IEEE eTransactions on network and service management, 2024-12, Vol.21 (6), p.6008-6025</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2033-8431 ; 0000-0001-5658-7734 ; 0000-0003-2481-8774 ; 0009-0005-3398-7555</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10613001$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10613001$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Shuaichao</creatorcontrib><creatorcontrib>Guo, Shaoyong</creatorcontrib><creatorcontrib>Hao, Jiakai</creatorcontrib><creatorcontrib>Ren, Yinlin</creatorcontrib><creatorcontrib>Qi, Feng</creatorcontrib><title>DPU-Enhanced Multi-Agent Actor-Critic Algorithm for Cross-Domain Resource Scheduling in Computing Power Network</title><title>IEEE eTransactions on network and service management</title><addtitle>T-NSM</addtitle><description>The distribution of computing resources in the Computing Power Network (CPN) is uneven, leading to an imbalance in resource supply and demand within domains, necessitating cross-domain resource scheduling. To address the cross-domain resource scheduling challenge in CPN, this paper presents an Improved Multi-Agent Actor-Critic (IMAAC) resource scheduling approach leveraging Data Processing Unit (DPU) offloading. Initially, we introduce a cross-domain resource scheduling architecture tailored for CPN by leveraging DPU offloading. Specifically, we delegate certain functionalities of the Multi-Agent Deep Reinforcement Learning (MADRL) Agent to DPUs, aiming to mitigate communication costs incurred during the generation of cross-domain scheduling decisions. Second, we introduce the parallel experience ensemble and multi-head attention mechanism in the Multi-Agent Actor-Critic (MAAC) framework to compress the state-space dimensionality of agent association across domains. Finally, we introduce the parallelized dual-policy network structure to mitigate training instability and convergence challenges within the actor and critic networks. Experimental results showcase that IMAAC achieves noteworthy reductions of 5.98%~13.56%, 23.54%~33.55%, and 41.17%~58.88% in total system delay, energy consumption, and the number of discarded tasks, respectively, compared to benchmark experiments.</description><subject>Computer architecture</subject><subject>computing power network</subject><subject>Convergence</subject><subject>Costs</subject><subject>Delays</subject><subject>DPU</subject><subject>Heuristic algorithms</subject><subject>multi-agent actor-critic</subject><subject>resource scheduling</subject><subject>Scheduling algorithms</subject><subject>Task analysis</subject><issn>1932-4537</issn><issn>1932-4537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1OwzAQhC0EEqXwAEgc_AIuazuJ62OUlh-pLRUt5yh11m0giSsnUcXbk4geetrZ1cxq9BHyyGHCOejn7WqznAgQwUQGMtBaXZER11KwIJTq-kLfkrum-QYIp1yLEXGz9Reb14esNpjTZVe2BYv3WLc0Nq3zLPFFWxgal3vXq0NFrfM08a5p2MxVWVHTT2xc5w3SjTlg3pVFvaf9OXHVsWuHZe1O6OkK25PzP_fkxmZlgw_nOSbbl_k2eWOLj9f3JF4wE0nOtNFKRCYAJaaGB5DvwCpuzW5nNRgbgrKRsbkAUBplpkUUcgyMtMh13pvlmPD_t2ao6tGmR19Umf9NOaQDsHQAlg7A0jOwPvP0nykQ8cIfcQnA5R-tvGjE</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Wang, Shuaichao</creator><creator>Guo, Shaoyong</creator><creator>Hao, Jiakai</creator><creator>Ren, Yinlin</creator><creator>Qi, Feng</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2033-8431</orcidid><orcidid>https://orcid.org/0000-0001-5658-7734</orcidid><orcidid>https://orcid.org/0000-0003-2481-8774</orcidid><orcidid>https://orcid.org/0009-0005-3398-7555</orcidid></search><sort><creationdate>202412</creationdate><title>DPU-Enhanced Multi-Agent Actor-Critic Algorithm for Cross-Domain Resource Scheduling in Computing Power Network</title><author>Wang, Shuaichao ; Guo, Shaoyong ; Hao, Jiakai ; Ren, Yinlin ; Qi, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c631-9c9726c40728c140db0f71fcbbf90cf507f6cfd20079e3a92651e4c3fe19ddb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computer architecture</topic><topic>computing power network</topic><topic>Convergence</topic><topic>Costs</topic><topic>Delays</topic><topic>DPU</topic><topic>Heuristic algorithms</topic><topic>multi-agent actor-critic</topic><topic>resource scheduling</topic><topic>Scheduling algorithms</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shuaichao</creatorcontrib><creatorcontrib>Guo, Shaoyong</creatorcontrib><creatorcontrib>Hao, Jiakai</creatorcontrib><creatorcontrib>Ren, Yinlin</creatorcontrib><creatorcontrib>Qi, Feng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE eTransactions on network and service management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Shuaichao</au><au>Guo, Shaoyong</au><au>Hao, Jiakai</au><au>Ren, Yinlin</au><au>Qi, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DPU-Enhanced Multi-Agent Actor-Critic Algorithm for Cross-Domain Resource Scheduling in Computing Power Network</atitle><jtitle>IEEE eTransactions on network and service management</jtitle><stitle>T-NSM</stitle><date>2024-12</date><risdate>2024</risdate><volume>21</volume><issue>6</issue><spage>6008</spage><epage>6025</epage><pages>6008-6025</pages><issn>1932-4537</issn><eissn>1932-4537</eissn><coden>ITNSC4</coden><abstract>The distribution of computing resources in the Computing Power Network (CPN) is uneven, leading to an imbalance in resource supply and demand within domains, necessitating cross-domain resource scheduling. To address the cross-domain resource scheduling challenge in CPN, this paper presents an Improved Multi-Agent Actor-Critic (IMAAC) resource scheduling approach leveraging Data Processing Unit (DPU) offloading. Initially, we introduce a cross-domain resource scheduling architecture tailored for CPN by leveraging DPU offloading. Specifically, we delegate certain functionalities of the Multi-Agent Deep Reinforcement Learning (MADRL) Agent to DPUs, aiming to mitigate communication costs incurred during the generation of cross-domain scheduling decisions. Second, we introduce the parallel experience ensemble and multi-head attention mechanism in the Multi-Agent Actor-Critic (MAAC) framework to compress the state-space dimensionality of agent association across domains. Finally, we introduce the parallelized dual-policy network structure to mitigate training instability and convergence challenges within the actor and critic networks. Experimental results showcase that IMAAC achieves noteworthy reductions of 5.98%~13.56%, 23.54%~33.55%, and 41.17%~58.88% in total system delay, energy consumption, and the number of discarded tasks, respectively, compared to benchmark experiments.</abstract><pub>IEEE</pub><doi>10.1109/TNSM.2024.3434997</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-2033-8431</orcidid><orcidid>https://orcid.org/0000-0001-5658-7734</orcidid><orcidid>https://orcid.org/0000-0003-2481-8774</orcidid><orcidid>https://orcid.org/0009-0005-3398-7555</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-4537 |
ispartof | IEEE eTransactions on network and service management, 2024-12, Vol.21 (6), p.6008-6025 |
issn | 1932-4537 1932-4537 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TNSM_2024_3434997 |
source | IEEE Electronic Library (IEL) |
subjects | Computer architecture computing power network Convergence Costs Delays DPU Heuristic algorithms multi-agent actor-critic resource scheduling Scheduling algorithms Task analysis |
title | DPU-Enhanced Multi-Agent Actor-Critic Algorithm for Cross-Domain Resource Scheduling in Computing Power Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A33%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DPU-Enhanced%20Multi-Agent%20Actor-Critic%20Algorithm%20for%20Cross-Domain%20Resource%20Scheduling%20in%20Computing%20Power%20Network&rft.jtitle=IEEE%20eTransactions%20on%20network%20and%20service%20management&rft.au=Wang,%20Shuaichao&rft.date=2024-12&rft.volume=21&rft.issue=6&rft.spage=6008&rft.epage=6025&rft.pages=6008-6025&rft.issn=1932-4537&rft.eissn=1932-4537&rft.coden=ITNSC4&rft_id=info:doi/10.1109/TNSM.2024.3434997&rft_dat=%3Ccrossref_RIE%3E10_1109_TNSM_2024_3434997%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10613001&rfr_iscdi=true |