Service Function Chain Scheduling Under the Multi-Cloud Collaborative Service of Information Networks Used for Cross-Domain Remote Surgery
Remote surgery is an emerging medical business derived from information networking technology and plays an increasingly essential role in the medical system. In remote surgery, it is imperative to facilitate cross-regional information transmission and processing by leveraging medical information net...
Gespeichert in:
Veröffentlicht in: | IEEE eTransactions on network and service management 2024-08, Vol.21 (4), p.4598-4612 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4612 |
---|---|
container_issue | 4 |
container_start_page | 4598 |
container_title | IEEE eTransactions on network and service management |
container_volume | 21 |
creator | Zhang, Qinghua Zhang, Xianchao Chen, Jia Gao, Deyun Wu, Yingda Wang, Yinhao Huang, Xu Zhang, Hongke |
description | Remote surgery is an emerging medical business derived from information networking technology and plays an increasingly essential role in the medical system. In remote surgery, it is imperative to facilitate cross-regional information transmission and processing by leveraging medical information networks to establish a collaborative service model served by multiple data centers in different regions, enabling collaboration and support for surgery operations. Additionally, the implementation of service function chain scheduling technology is crucial for the efficient allocation of computing resources of data centers. In this paper, we design a novel multi-cloud collaborative medical information network framework. Based on this framework, the service function chain (SFC) scheduling problem is investigated to minimize the total weighted end-to-end delay. To solve the scheduling problem, the original problem is reformulated as a Multiple Markov Decision Process (MMDP). Then, a multiple-state-action deep reinforcement learning (MSA-DRL) algorithm is developed to learn the best scheduling policy. Simulation results are presented to demonstrate the superiority of the proposed approach in the aspect of total weighted end to end delay against other benchmark algorithms. |
doi_str_mv | 10.1109/TNSM.2024.3424297 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNSM_2024_3424297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10594777</ieee_id><sourcerecordid>10_1109_TNSM_2024_3424297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-c29b9c35fbc8c321d9e1d799cfa7163e2e872ed98771f96b2a5977af880052e93</originalsourceid><addsrcrecordid>eNpNkNFOwjAUhhujiYg-gIkXfYHh2m60vTRTlAQwEbheuu4Uqttqug3CK_jUboIJV-fk5Pz_-c-H0D0JR4SE8nG1WM5HNKTRiEU0opJfoAGRjAZRzPjlWX-Nbur6MwxjQSQdoJ8l-J3VgCdtpRvrKpxsla3wUm8hbwtbbfC6ysHjZgt43haNDZLCtTlOXFGozHnV2B3gfxdn8LQyzpfqz2sBzd75rxqva8hxN8eJd3UdPLuyP_IBpWs6ces34A-36Mqoooa7Ux2i9eRllbwFs_fXafI0CzSJRBNoKjOpWWwyLTSjJJdAci6lNoqTMQMKglPIpeCcGDnOqIol58oI0T1NQbIhIkdf3WfxYNJvb0vlDykJ0x5m2sNMe5jpCWaneThqLACc7ccy4pyzX1HTc4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Service Function Chain Scheduling Under the Multi-Cloud Collaborative Service of Information Networks Used for Cross-Domain Remote Surgery</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Qinghua ; Zhang, Xianchao ; Chen, Jia ; Gao, Deyun ; Wu, Yingda ; Wang, Yinhao ; Huang, Xu ; Zhang, Hongke</creator><creatorcontrib>Zhang, Qinghua ; Zhang, Xianchao ; Chen, Jia ; Gao, Deyun ; Wu, Yingda ; Wang, Yinhao ; Huang, Xu ; Zhang, Hongke</creatorcontrib><description>Remote surgery is an emerging medical business derived from information networking technology and plays an increasingly essential role in the medical system. In remote surgery, it is imperative to facilitate cross-regional information transmission and processing by leveraging medical information networks to establish a collaborative service model served by multiple data centers in different regions, enabling collaboration and support for surgery operations. Additionally, the implementation of service function chain scheduling technology is crucial for the efficient allocation of computing resources of data centers. In this paper, we design a novel multi-cloud collaborative medical information network framework. Based on this framework, the service function chain (SFC) scheduling problem is investigated to minimize the total weighted end-to-end delay. To solve the scheduling problem, the original problem is reformulated as a Multiple Markov Decision Process (MMDP). Then, a multiple-state-action deep reinforcement learning (MSA-DRL) algorithm is developed to learn the best scheduling policy. Simulation results are presented to demonstrate the superiority of the proposed approach in the aspect of total weighted end to end delay against other benchmark algorithms.</description><identifier>ISSN: 1932-4537</identifier><identifier>EISSN: 1932-4537</identifier><identifier>DOI: 10.1109/TNSM.2024.3424297</identifier><identifier>CODEN: ITNSC4</identifier><language>eng</language><publisher>IEEE</publisher><subject>Business ; Collaboration ; Data centers ; deep reinforcement learning ; medical information networks ; multi-cloud collaborative ; Optimal scheduling ; Remote surgery ; Scheduling ; service function chain (SFC) ; Service function chaining ; Surgery</subject><ispartof>IEEE eTransactions on network and service management, 2024-08, Vol.21 (4), p.4598-4612</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-c29b9c35fbc8c321d9e1d799cfa7163e2e872ed98771f96b2a5977af880052e93</cites><orcidid>0000-0002-8641-4057 ; 0009-0005-5891-4395 ; 0000-0003-2754-334X ; 0000-0002-1785-8746 ; 0000-0001-8906-813X ; 0000-0001-8925-8371</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10594777$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10594777$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Qinghua</creatorcontrib><creatorcontrib>Zhang, Xianchao</creatorcontrib><creatorcontrib>Chen, Jia</creatorcontrib><creatorcontrib>Gao, Deyun</creatorcontrib><creatorcontrib>Wu, Yingda</creatorcontrib><creatorcontrib>Wang, Yinhao</creatorcontrib><creatorcontrib>Huang, Xu</creatorcontrib><creatorcontrib>Zhang, Hongke</creatorcontrib><title>Service Function Chain Scheduling Under the Multi-Cloud Collaborative Service of Information Networks Used for Cross-Domain Remote Surgery</title><title>IEEE eTransactions on network and service management</title><addtitle>T-NSM</addtitle><description>Remote surgery is an emerging medical business derived from information networking technology and plays an increasingly essential role in the medical system. In remote surgery, it is imperative to facilitate cross-regional information transmission and processing by leveraging medical information networks to establish a collaborative service model served by multiple data centers in different regions, enabling collaboration and support for surgery operations. Additionally, the implementation of service function chain scheduling technology is crucial for the efficient allocation of computing resources of data centers. In this paper, we design a novel multi-cloud collaborative medical information network framework. Based on this framework, the service function chain (SFC) scheduling problem is investigated to minimize the total weighted end-to-end delay. To solve the scheduling problem, the original problem is reformulated as a Multiple Markov Decision Process (MMDP). Then, a multiple-state-action deep reinforcement learning (MSA-DRL) algorithm is developed to learn the best scheduling policy. Simulation results are presented to demonstrate the superiority of the proposed approach in the aspect of total weighted end to end delay against other benchmark algorithms.</description><subject>Business</subject><subject>Collaboration</subject><subject>Data centers</subject><subject>deep reinforcement learning</subject><subject>medical information networks</subject><subject>multi-cloud collaborative</subject><subject>Optimal scheduling</subject><subject>Remote surgery</subject><subject>Scheduling</subject><subject>service function chain (SFC)</subject><subject>Service function chaining</subject><subject>Surgery</subject><issn>1932-4537</issn><issn>1932-4537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkNFOwjAUhhujiYg-gIkXfYHh2m60vTRTlAQwEbheuu4Uqttqug3CK_jUboIJV-fk5Pz_-c-H0D0JR4SE8nG1WM5HNKTRiEU0opJfoAGRjAZRzPjlWX-Nbur6MwxjQSQdoJ8l-J3VgCdtpRvrKpxsla3wUm8hbwtbbfC6ysHjZgt43haNDZLCtTlOXFGozHnV2B3gfxdn8LQyzpfqz2sBzd75rxqva8hxN8eJd3UdPLuyP_IBpWs6ces34A-36Mqoooa7Ux2i9eRllbwFs_fXafI0CzSJRBNoKjOpWWwyLTSjJJdAci6lNoqTMQMKglPIpeCcGDnOqIol58oI0T1NQbIhIkdf3WfxYNJvb0vlDykJ0x5m2sNMe5jpCWaneThqLACc7ccy4pyzX1HTc4A</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Zhang, Qinghua</creator><creator>Zhang, Xianchao</creator><creator>Chen, Jia</creator><creator>Gao, Deyun</creator><creator>Wu, Yingda</creator><creator>Wang, Yinhao</creator><creator>Huang, Xu</creator><creator>Zhang, Hongke</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8641-4057</orcidid><orcidid>https://orcid.org/0009-0005-5891-4395</orcidid><orcidid>https://orcid.org/0000-0003-2754-334X</orcidid><orcidid>https://orcid.org/0000-0002-1785-8746</orcidid><orcidid>https://orcid.org/0000-0001-8906-813X</orcidid><orcidid>https://orcid.org/0000-0001-8925-8371</orcidid></search><sort><creationdate>202408</creationdate><title>Service Function Chain Scheduling Under the Multi-Cloud Collaborative Service of Information Networks Used for Cross-Domain Remote Surgery</title><author>Zhang, Qinghua ; Zhang, Xianchao ; Chen, Jia ; Gao, Deyun ; Wu, Yingda ; Wang, Yinhao ; Huang, Xu ; Zhang, Hongke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-c29b9c35fbc8c321d9e1d799cfa7163e2e872ed98771f96b2a5977af880052e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Business</topic><topic>Collaboration</topic><topic>Data centers</topic><topic>deep reinforcement learning</topic><topic>medical information networks</topic><topic>multi-cloud collaborative</topic><topic>Optimal scheduling</topic><topic>Remote surgery</topic><topic>Scheduling</topic><topic>service function chain (SFC)</topic><topic>Service function chaining</topic><topic>Surgery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Qinghua</creatorcontrib><creatorcontrib>Zhang, Xianchao</creatorcontrib><creatorcontrib>Chen, Jia</creatorcontrib><creatorcontrib>Gao, Deyun</creatorcontrib><creatorcontrib>Wu, Yingda</creatorcontrib><creatorcontrib>Wang, Yinhao</creatorcontrib><creatorcontrib>Huang, Xu</creatorcontrib><creatorcontrib>Zhang, Hongke</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE eTransactions on network and service management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Qinghua</au><au>Zhang, Xianchao</au><au>Chen, Jia</au><au>Gao, Deyun</au><au>Wu, Yingda</au><au>Wang, Yinhao</au><au>Huang, Xu</au><au>Zhang, Hongke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Service Function Chain Scheduling Under the Multi-Cloud Collaborative Service of Information Networks Used for Cross-Domain Remote Surgery</atitle><jtitle>IEEE eTransactions on network and service management</jtitle><stitle>T-NSM</stitle><date>2024-08</date><risdate>2024</risdate><volume>21</volume><issue>4</issue><spage>4598</spage><epage>4612</epage><pages>4598-4612</pages><issn>1932-4537</issn><eissn>1932-4537</eissn><coden>ITNSC4</coden><abstract>Remote surgery is an emerging medical business derived from information networking technology and plays an increasingly essential role in the medical system. In remote surgery, it is imperative to facilitate cross-regional information transmission and processing by leveraging medical information networks to establish a collaborative service model served by multiple data centers in different regions, enabling collaboration and support for surgery operations. Additionally, the implementation of service function chain scheduling technology is crucial for the efficient allocation of computing resources of data centers. In this paper, we design a novel multi-cloud collaborative medical information network framework. Based on this framework, the service function chain (SFC) scheduling problem is investigated to minimize the total weighted end-to-end delay. To solve the scheduling problem, the original problem is reformulated as a Multiple Markov Decision Process (MMDP). Then, a multiple-state-action deep reinforcement learning (MSA-DRL) algorithm is developed to learn the best scheduling policy. Simulation results are presented to demonstrate the superiority of the proposed approach in the aspect of total weighted end to end delay against other benchmark algorithms.</abstract><pub>IEEE</pub><doi>10.1109/TNSM.2024.3424297</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8641-4057</orcidid><orcidid>https://orcid.org/0009-0005-5891-4395</orcidid><orcidid>https://orcid.org/0000-0003-2754-334X</orcidid><orcidid>https://orcid.org/0000-0002-1785-8746</orcidid><orcidid>https://orcid.org/0000-0001-8906-813X</orcidid><orcidid>https://orcid.org/0000-0001-8925-8371</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-4537 |
ispartof | IEEE eTransactions on network and service management, 2024-08, Vol.21 (4), p.4598-4612 |
issn | 1932-4537 1932-4537 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TNSM_2024_3424297 |
source | IEEE Electronic Library (IEL) |
subjects | Business Collaboration Data centers deep reinforcement learning medical information networks multi-cloud collaborative Optimal scheduling Remote surgery Scheduling service function chain (SFC) Service function chaining Surgery |
title | Service Function Chain Scheduling Under the Multi-Cloud Collaborative Service of Information Networks Used for Cross-Domain Remote Surgery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A16%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Service%20Function%20Chain%20Scheduling%20Under%20the%20Multi-Cloud%20Collaborative%20Service%20of%20Information%20Networks%20Used%20for%20Cross-Domain%20Remote%20Surgery&rft.jtitle=IEEE%20eTransactions%20on%20network%20and%20service%20management&rft.au=Zhang,%20Qinghua&rft.date=2024-08&rft.volume=21&rft.issue=4&rft.spage=4598&rft.epage=4612&rft.pages=4598-4612&rft.issn=1932-4537&rft.eissn=1932-4537&rft.coden=ITNSC4&rft_id=info:doi/10.1109/TNSM.2024.3424297&rft_dat=%3Ccrossref_RIE%3E10_1109_TNSM_2024_3424297%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10594777&rfr_iscdi=true |