Service Function Chain Scheduling Under the Multi-Cloud Collaborative Service of Information Networks Used for Cross-Domain Remote Surgery

Remote surgery is an emerging medical business derived from information networking technology and plays an increasingly essential role in the medical system. In remote surgery, it is imperative to facilitate cross-regional information transmission and processing by leveraging medical information net...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE eTransactions on network and service management 2024-08, Vol.21 (4), p.4598-4612
Hauptverfasser: Zhang, Qinghua, Zhang, Xianchao, Chen, Jia, Gao, Deyun, Wu, Yingda, Wang, Yinhao, Huang, Xu, Zhang, Hongke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4612
container_issue 4
container_start_page 4598
container_title IEEE eTransactions on network and service management
container_volume 21
creator Zhang, Qinghua
Zhang, Xianchao
Chen, Jia
Gao, Deyun
Wu, Yingda
Wang, Yinhao
Huang, Xu
Zhang, Hongke
description Remote surgery is an emerging medical business derived from information networking technology and plays an increasingly essential role in the medical system. In remote surgery, it is imperative to facilitate cross-regional information transmission and processing by leveraging medical information networks to establish a collaborative service model served by multiple data centers in different regions, enabling collaboration and support for surgery operations. Additionally, the implementation of service function chain scheduling technology is crucial for the efficient allocation of computing resources of data centers. In this paper, we design a novel multi-cloud collaborative medical information network framework. Based on this framework, the service function chain (SFC) scheduling problem is investigated to minimize the total weighted end-to-end delay. To solve the scheduling problem, the original problem is reformulated as a Multiple Markov Decision Process (MMDP). Then, a multiple-state-action deep reinforcement learning (MSA-DRL) algorithm is developed to learn the best scheduling policy. Simulation results are presented to demonstrate the superiority of the proposed approach in the aspect of total weighted end to end delay against other benchmark algorithms.
doi_str_mv 10.1109/TNSM.2024.3424297
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNSM_2024_3424297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10594777</ieee_id><sourcerecordid>10_1109_TNSM_2024_3424297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-c29b9c35fbc8c321d9e1d799cfa7163e2e872ed98771f96b2a5977af880052e93</originalsourceid><addsrcrecordid>eNpNkNFOwjAUhhujiYg-gIkXfYHh2m60vTRTlAQwEbheuu4Uqttqug3CK_jUboIJV-fk5Pz_-c-H0D0JR4SE8nG1WM5HNKTRiEU0opJfoAGRjAZRzPjlWX-Nbur6MwxjQSQdoJ8l-J3VgCdtpRvrKpxsla3wUm8hbwtbbfC6ysHjZgt43haNDZLCtTlOXFGozHnV2B3gfxdn8LQyzpfqz2sBzd75rxqva8hxN8eJd3UdPLuyP_IBpWs6ces34A-36Mqoooa7Ux2i9eRllbwFs_fXafI0CzSJRBNoKjOpWWwyLTSjJJdAci6lNoqTMQMKglPIpeCcGDnOqIol58oI0T1NQbIhIkdf3WfxYNJvb0vlDykJ0x5m2sNMe5jpCWaneThqLACc7ccy4pyzX1HTc4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Service Function Chain Scheduling Under the Multi-Cloud Collaborative Service of Information Networks Used for Cross-Domain Remote Surgery</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Qinghua ; Zhang, Xianchao ; Chen, Jia ; Gao, Deyun ; Wu, Yingda ; Wang, Yinhao ; Huang, Xu ; Zhang, Hongke</creator><creatorcontrib>Zhang, Qinghua ; Zhang, Xianchao ; Chen, Jia ; Gao, Deyun ; Wu, Yingda ; Wang, Yinhao ; Huang, Xu ; Zhang, Hongke</creatorcontrib><description>Remote surgery is an emerging medical business derived from information networking technology and plays an increasingly essential role in the medical system. In remote surgery, it is imperative to facilitate cross-regional information transmission and processing by leveraging medical information networks to establish a collaborative service model served by multiple data centers in different regions, enabling collaboration and support for surgery operations. Additionally, the implementation of service function chain scheduling technology is crucial for the efficient allocation of computing resources of data centers. In this paper, we design a novel multi-cloud collaborative medical information network framework. Based on this framework, the service function chain (SFC) scheduling problem is investigated to minimize the total weighted end-to-end delay. To solve the scheduling problem, the original problem is reformulated as a Multiple Markov Decision Process (MMDP). Then, a multiple-state-action deep reinforcement learning (MSA-DRL) algorithm is developed to learn the best scheduling policy. Simulation results are presented to demonstrate the superiority of the proposed approach in the aspect of total weighted end to end delay against other benchmark algorithms.</description><identifier>ISSN: 1932-4537</identifier><identifier>EISSN: 1932-4537</identifier><identifier>DOI: 10.1109/TNSM.2024.3424297</identifier><identifier>CODEN: ITNSC4</identifier><language>eng</language><publisher>IEEE</publisher><subject>Business ; Collaboration ; Data centers ; deep reinforcement learning ; medical information networks ; multi-cloud collaborative ; Optimal scheduling ; Remote surgery ; Scheduling ; service function chain (SFC) ; Service function chaining ; Surgery</subject><ispartof>IEEE eTransactions on network and service management, 2024-08, Vol.21 (4), p.4598-4612</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-c29b9c35fbc8c321d9e1d799cfa7163e2e872ed98771f96b2a5977af880052e93</cites><orcidid>0000-0002-8641-4057 ; 0009-0005-5891-4395 ; 0000-0003-2754-334X ; 0000-0002-1785-8746 ; 0000-0001-8906-813X ; 0000-0001-8925-8371</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10594777$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10594777$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Qinghua</creatorcontrib><creatorcontrib>Zhang, Xianchao</creatorcontrib><creatorcontrib>Chen, Jia</creatorcontrib><creatorcontrib>Gao, Deyun</creatorcontrib><creatorcontrib>Wu, Yingda</creatorcontrib><creatorcontrib>Wang, Yinhao</creatorcontrib><creatorcontrib>Huang, Xu</creatorcontrib><creatorcontrib>Zhang, Hongke</creatorcontrib><title>Service Function Chain Scheduling Under the Multi-Cloud Collaborative Service of Information Networks Used for Cross-Domain Remote Surgery</title><title>IEEE eTransactions on network and service management</title><addtitle>T-NSM</addtitle><description>Remote surgery is an emerging medical business derived from information networking technology and plays an increasingly essential role in the medical system. In remote surgery, it is imperative to facilitate cross-regional information transmission and processing by leveraging medical information networks to establish a collaborative service model served by multiple data centers in different regions, enabling collaboration and support for surgery operations. Additionally, the implementation of service function chain scheduling technology is crucial for the efficient allocation of computing resources of data centers. In this paper, we design a novel multi-cloud collaborative medical information network framework. Based on this framework, the service function chain (SFC) scheduling problem is investigated to minimize the total weighted end-to-end delay. To solve the scheduling problem, the original problem is reformulated as a Multiple Markov Decision Process (MMDP). Then, a multiple-state-action deep reinforcement learning (MSA-DRL) algorithm is developed to learn the best scheduling policy. Simulation results are presented to demonstrate the superiority of the proposed approach in the aspect of total weighted end to end delay against other benchmark algorithms.</description><subject>Business</subject><subject>Collaboration</subject><subject>Data centers</subject><subject>deep reinforcement learning</subject><subject>medical information networks</subject><subject>multi-cloud collaborative</subject><subject>Optimal scheduling</subject><subject>Remote surgery</subject><subject>Scheduling</subject><subject>service function chain (SFC)</subject><subject>Service function chaining</subject><subject>Surgery</subject><issn>1932-4537</issn><issn>1932-4537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkNFOwjAUhhujiYg-gIkXfYHh2m60vTRTlAQwEbheuu4Uqttqug3CK_jUboIJV-fk5Pz_-c-H0D0JR4SE8nG1WM5HNKTRiEU0opJfoAGRjAZRzPjlWX-Nbur6MwxjQSQdoJ8l-J3VgCdtpRvrKpxsla3wUm8hbwtbbfC6ysHjZgt43haNDZLCtTlOXFGozHnV2B3gfxdn8LQyzpfqz2sBzd75rxqva8hxN8eJd3UdPLuyP_IBpWs6ces34A-36Mqoooa7Ux2i9eRllbwFs_fXafI0CzSJRBNoKjOpWWwyLTSjJJdAci6lNoqTMQMKglPIpeCcGDnOqIol58oI0T1NQbIhIkdf3WfxYNJvb0vlDykJ0x5m2sNMe5jpCWaneThqLACc7ccy4pyzX1HTc4A</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Zhang, Qinghua</creator><creator>Zhang, Xianchao</creator><creator>Chen, Jia</creator><creator>Gao, Deyun</creator><creator>Wu, Yingda</creator><creator>Wang, Yinhao</creator><creator>Huang, Xu</creator><creator>Zhang, Hongke</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8641-4057</orcidid><orcidid>https://orcid.org/0009-0005-5891-4395</orcidid><orcidid>https://orcid.org/0000-0003-2754-334X</orcidid><orcidid>https://orcid.org/0000-0002-1785-8746</orcidid><orcidid>https://orcid.org/0000-0001-8906-813X</orcidid><orcidid>https://orcid.org/0000-0001-8925-8371</orcidid></search><sort><creationdate>202408</creationdate><title>Service Function Chain Scheduling Under the Multi-Cloud Collaborative Service of Information Networks Used for Cross-Domain Remote Surgery</title><author>Zhang, Qinghua ; Zhang, Xianchao ; Chen, Jia ; Gao, Deyun ; Wu, Yingda ; Wang, Yinhao ; Huang, Xu ; Zhang, Hongke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-c29b9c35fbc8c321d9e1d799cfa7163e2e872ed98771f96b2a5977af880052e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Business</topic><topic>Collaboration</topic><topic>Data centers</topic><topic>deep reinforcement learning</topic><topic>medical information networks</topic><topic>multi-cloud collaborative</topic><topic>Optimal scheduling</topic><topic>Remote surgery</topic><topic>Scheduling</topic><topic>service function chain (SFC)</topic><topic>Service function chaining</topic><topic>Surgery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Qinghua</creatorcontrib><creatorcontrib>Zhang, Xianchao</creatorcontrib><creatorcontrib>Chen, Jia</creatorcontrib><creatorcontrib>Gao, Deyun</creatorcontrib><creatorcontrib>Wu, Yingda</creatorcontrib><creatorcontrib>Wang, Yinhao</creatorcontrib><creatorcontrib>Huang, Xu</creatorcontrib><creatorcontrib>Zhang, Hongke</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE eTransactions on network and service management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Qinghua</au><au>Zhang, Xianchao</au><au>Chen, Jia</au><au>Gao, Deyun</au><au>Wu, Yingda</au><au>Wang, Yinhao</au><au>Huang, Xu</au><au>Zhang, Hongke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Service Function Chain Scheduling Under the Multi-Cloud Collaborative Service of Information Networks Used for Cross-Domain Remote Surgery</atitle><jtitle>IEEE eTransactions on network and service management</jtitle><stitle>T-NSM</stitle><date>2024-08</date><risdate>2024</risdate><volume>21</volume><issue>4</issue><spage>4598</spage><epage>4612</epage><pages>4598-4612</pages><issn>1932-4537</issn><eissn>1932-4537</eissn><coden>ITNSC4</coden><abstract>Remote surgery is an emerging medical business derived from information networking technology and plays an increasingly essential role in the medical system. In remote surgery, it is imperative to facilitate cross-regional information transmission and processing by leveraging medical information networks to establish a collaborative service model served by multiple data centers in different regions, enabling collaboration and support for surgery operations. Additionally, the implementation of service function chain scheduling technology is crucial for the efficient allocation of computing resources of data centers. In this paper, we design a novel multi-cloud collaborative medical information network framework. Based on this framework, the service function chain (SFC) scheduling problem is investigated to minimize the total weighted end-to-end delay. To solve the scheduling problem, the original problem is reformulated as a Multiple Markov Decision Process (MMDP). Then, a multiple-state-action deep reinforcement learning (MSA-DRL) algorithm is developed to learn the best scheduling policy. Simulation results are presented to demonstrate the superiority of the proposed approach in the aspect of total weighted end to end delay against other benchmark algorithms.</abstract><pub>IEEE</pub><doi>10.1109/TNSM.2024.3424297</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8641-4057</orcidid><orcidid>https://orcid.org/0009-0005-5891-4395</orcidid><orcidid>https://orcid.org/0000-0003-2754-334X</orcidid><orcidid>https://orcid.org/0000-0002-1785-8746</orcidid><orcidid>https://orcid.org/0000-0001-8906-813X</orcidid><orcidid>https://orcid.org/0000-0001-8925-8371</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4537
ispartof IEEE eTransactions on network and service management, 2024-08, Vol.21 (4), p.4598-4612
issn 1932-4537
1932-4537
language eng
recordid cdi_crossref_primary_10_1109_TNSM_2024_3424297
source IEEE Electronic Library (IEL)
subjects Business
Collaboration
Data centers
deep reinforcement learning
medical information networks
multi-cloud collaborative
Optimal scheduling
Remote surgery
Scheduling
service function chain (SFC)
Service function chaining
Surgery
title Service Function Chain Scheduling Under the Multi-Cloud Collaborative Service of Information Networks Used for Cross-Domain Remote Surgery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A16%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Service%20Function%20Chain%20Scheduling%20Under%20the%20Multi-Cloud%20Collaborative%20Service%20of%20Information%20Networks%20Used%20for%20Cross-Domain%20Remote%20Surgery&rft.jtitle=IEEE%20eTransactions%20on%20network%20and%20service%20management&rft.au=Zhang,%20Qinghua&rft.date=2024-08&rft.volume=21&rft.issue=4&rft.spage=4598&rft.epage=4612&rft.pages=4598-4612&rft.issn=1932-4537&rft.eissn=1932-4537&rft.coden=ITNSC4&rft_id=info:doi/10.1109/TNSM.2024.3424297&rft_dat=%3Ccrossref_RIE%3E10_1109_TNSM_2024_3424297%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10594777&rfr_iscdi=true