MDU-CACS: A Coordinated Forecasting-Based Cloud-Assisted Dynamic Channel Assignment Mechanism for Wi-Fi Network Clusters

In this paper, we propose a cloud-assisted dynamic channel assignment system, MDU-CACS, for groups of Wi-Fi networks in a coordinated fashion to improve the performance and user experience in each network. MDU-CACS expands upon our previous mechanism, CACS, with the same design principle and framewo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE eTransactions on network and service management 2024-08, Vol.21 (4), p.3659-3680
Hauptverfasser: Kuran, Mehmet Sukru, Koksal, Oguz Kaan, Kilic, Melih, Susuz, Deniz Ece, Ilter, Ahmet Ugur, Nehas, Gokce Ekin, Ozturk, Sadik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3680
container_issue 4
container_start_page 3659
container_title IEEE eTransactions on network and service management
container_volume 21
creator Kuran, Mehmet Sukru
Koksal, Oguz Kaan
Kilic, Melih
Susuz, Deniz Ece
Ilter, Ahmet Ugur
Nehas, Gokce Ekin
Ozturk, Sadik
description In this paper, we propose a cloud-assisted dynamic channel assignment system, MDU-CACS, for groups of Wi-Fi networks in a coordinated fashion to improve the performance and user experience in each network. MDU-CACS expands upon our previous mechanism, CACS, with the same design principle and framework. MDU-CACS utilizes periodic measurements of channel availability and neighbor information by the access points (AP) in all possible 2.4 GHz and 5 GHz channels. A cloud system gathers this measurement information and generates channel state predictions for each channel for each AP. Consequently, by using these predictions the cloud system searches for better a channel assignment for the whole Wi-Fi network group and sends channel change information to each AP if there is a better channel than their operating channels. We have conducted field trials of the two proposed channel assignment mechanisms over large scale actual residential Wi-Fi networks and compare their performance against widely deployed Least Congested Channel Search (LCCS) mechanism. Our results show CACS outperforms LCCS in terms of operating channel interference level with reduced number of channel changes; MDU-CACS further improves the operating channel interference over CACS albeit at a cost of somewhat higher number of channel changes. Both of our systems offer a complete framework for managing the channel assignment of Wi-Fi networks considering dynamically varying wireless channel states and organically changing Wi-Fi network topologies following realistic residential Wi-Fi network environments.
doi_str_mv 10.1109/TNSM.2024.3412670
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNSM_2024_3412670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10554546</ieee_id><sourcerecordid>10_1109_TNSM_2024_3412670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-fed3942194a0470f77f9ec91279702dff419874181e68188e5e6c1642556d40b3</originalsourceid><addsrcrecordid>eNpNkM9PwjAUxxujiYj-ASYe-g8M-7p2Xb3NIWoCeADicanbK1ZhM-2I8t-7BQ6c3sv31-FDyC2wEQDT98v5YjbijItRLIAnip2RAeiYR0LG6vzkvyRXIXwxJlPQfED-ZuNVlGf54oFmNG8aX7natFjRSeOxNKF19Tp6NKFT8k2zq6IsBBf6wHhfm60raf5p6ho3tDfW9Rbrls6w7EQXttQ2nr67aOLoHNvfxn93K7uu7sM1ubBmE_DmeIdkNXla5i_R9O35Nc-mUckhbSOLVawFBy0ME4pZpazGUgNXWjFeWStAp0pACpikkKYoMSkhEVzKpBLsIx4SOOyWvgnBoy1-vNsavy-AFT26okdX9OiKI7quc3foOEQ8yUsppEjif77Xae0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>MDU-CACS: A Coordinated Forecasting-Based Cloud-Assisted Dynamic Channel Assignment Mechanism for Wi-Fi Network Clusters</title><source>IEEE Electronic Library (IEL)</source><creator>Kuran, Mehmet Sukru ; Koksal, Oguz Kaan ; Kilic, Melih ; Susuz, Deniz Ece ; Ilter, Ahmet Ugur ; Nehas, Gokce Ekin ; Ozturk, Sadik</creator><creatorcontrib>Kuran, Mehmet Sukru ; Koksal, Oguz Kaan ; Kilic, Melih ; Susuz, Deniz Ece ; Ilter, Ahmet Ugur ; Nehas, Gokce Ekin ; Ozturk, Sadik</creatorcontrib><description>In this paper, we propose a cloud-assisted dynamic channel assignment system, MDU-CACS, for groups of Wi-Fi networks in a coordinated fashion to improve the performance and user experience in each network. MDU-CACS expands upon our previous mechanism, CACS, with the same design principle and framework. MDU-CACS utilizes periodic measurements of channel availability and neighbor information by the access points (AP) in all possible 2.4 GHz and 5 GHz channels. A cloud system gathers this measurement information and generates channel state predictions for each channel for each AP. Consequently, by using these predictions the cloud system searches for better a channel assignment for the whole Wi-Fi network group and sends channel change information to each AP if there is a better channel than their operating channels. We have conducted field trials of the two proposed channel assignment mechanisms over large scale actual residential Wi-Fi networks and compare their performance against widely deployed Least Congested Channel Search (LCCS) mechanism. Our results show CACS outperforms LCCS in terms of operating channel interference level with reduced number of channel changes; MDU-CACS further improves the operating channel interference over CACS albeit at a cost of somewhat higher number of channel changes. Both of our systems offer a complete framework for managing the channel assignment of Wi-Fi networks considering dynamically varying wireless channel states and organically changing Wi-Fi network topologies following realistic residential Wi-Fi network environments.</description><identifier>ISSN: 1932-4537</identifier><identifier>EISSN: 1932-4537</identifier><identifier>DOI: 10.1109/TNSM.2024.3412670</identifier><identifier>CODEN: ITNSC4</identifier><language>eng</language><publisher>IEEE</publisher><subject>Channel allocation ; channel assignment ; Channel estimation ; cloud ; forecasting ; IEEE 802.11 ; Interference ; multi-dwelling unit ; Optimization ; Wi-Fi ; Wireless fidelity ; Wireless networks</subject><ispartof>IEEE eTransactions on network and service management, 2024-08, Vol.21 (4), p.3659-3680</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c218t-fed3942194a0470f77f9ec91279702dff419874181e68188e5e6c1642556d40b3</cites><orcidid>0000-0001-8742-2799</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10554546$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10554546$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kuran, Mehmet Sukru</creatorcontrib><creatorcontrib>Koksal, Oguz Kaan</creatorcontrib><creatorcontrib>Kilic, Melih</creatorcontrib><creatorcontrib>Susuz, Deniz Ece</creatorcontrib><creatorcontrib>Ilter, Ahmet Ugur</creatorcontrib><creatorcontrib>Nehas, Gokce Ekin</creatorcontrib><creatorcontrib>Ozturk, Sadik</creatorcontrib><title>MDU-CACS: A Coordinated Forecasting-Based Cloud-Assisted Dynamic Channel Assignment Mechanism for Wi-Fi Network Clusters</title><title>IEEE eTransactions on network and service management</title><addtitle>T-NSM</addtitle><description>In this paper, we propose a cloud-assisted dynamic channel assignment system, MDU-CACS, for groups of Wi-Fi networks in a coordinated fashion to improve the performance and user experience in each network. MDU-CACS expands upon our previous mechanism, CACS, with the same design principle and framework. MDU-CACS utilizes periodic measurements of channel availability and neighbor information by the access points (AP) in all possible 2.4 GHz and 5 GHz channels. A cloud system gathers this measurement information and generates channel state predictions for each channel for each AP. Consequently, by using these predictions the cloud system searches for better a channel assignment for the whole Wi-Fi network group and sends channel change information to each AP if there is a better channel than their operating channels. We have conducted field trials of the two proposed channel assignment mechanisms over large scale actual residential Wi-Fi networks and compare their performance against widely deployed Least Congested Channel Search (LCCS) mechanism. Our results show CACS outperforms LCCS in terms of operating channel interference level with reduced number of channel changes; MDU-CACS further improves the operating channel interference over CACS albeit at a cost of somewhat higher number of channel changes. Both of our systems offer a complete framework for managing the channel assignment of Wi-Fi networks considering dynamically varying wireless channel states and organically changing Wi-Fi network topologies following realistic residential Wi-Fi network environments.</description><subject>Channel allocation</subject><subject>channel assignment</subject><subject>Channel estimation</subject><subject>cloud</subject><subject>forecasting</subject><subject>IEEE 802.11</subject><subject>Interference</subject><subject>multi-dwelling unit</subject><subject>Optimization</subject><subject>Wi-Fi</subject><subject>Wireless fidelity</subject><subject>Wireless networks</subject><issn>1932-4537</issn><issn>1932-4537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9PwjAUxxujiYj-ASYe-g8M-7p2Xb3NIWoCeADicanbK1ZhM-2I8t-7BQ6c3sv31-FDyC2wEQDT98v5YjbijItRLIAnip2RAeiYR0LG6vzkvyRXIXwxJlPQfED-ZuNVlGf54oFmNG8aX7natFjRSeOxNKF19Tp6NKFT8k2zq6IsBBf6wHhfm60raf5p6ho3tDfW9Rbrls6w7EQXttQ2nr67aOLoHNvfxn93K7uu7sM1ubBmE_DmeIdkNXla5i_R9O35Nc-mUckhbSOLVawFBy0ME4pZpazGUgNXWjFeWStAp0pACpikkKYoMSkhEVzKpBLsIx4SOOyWvgnBoy1-vNsavy-AFT26okdX9OiKI7quc3foOEQ8yUsppEjif77Xae0</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Kuran, Mehmet Sukru</creator><creator>Koksal, Oguz Kaan</creator><creator>Kilic, Melih</creator><creator>Susuz, Deniz Ece</creator><creator>Ilter, Ahmet Ugur</creator><creator>Nehas, Gokce Ekin</creator><creator>Ozturk, Sadik</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8742-2799</orcidid></search><sort><creationdate>20240801</creationdate><title>MDU-CACS: A Coordinated Forecasting-Based Cloud-Assisted Dynamic Channel Assignment Mechanism for Wi-Fi Network Clusters</title><author>Kuran, Mehmet Sukru ; Koksal, Oguz Kaan ; Kilic, Melih ; Susuz, Deniz Ece ; Ilter, Ahmet Ugur ; Nehas, Gokce Ekin ; Ozturk, Sadik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-fed3942194a0470f77f9ec91279702dff419874181e68188e5e6c1642556d40b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Channel allocation</topic><topic>channel assignment</topic><topic>Channel estimation</topic><topic>cloud</topic><topic>forecasting</topic><topic>IEEE 802.11</topic><topic>Interference</topic><topic>multi-dwelling unit</topic><topic>Optimization</topic><topic>Wi-Fi</topic><topic>Wireless fidelity</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuran, Mehmet Sukru</creatorcontrib><creatorcontrib>Koksal, Oguz Kaan</creatorcontrib><creatorcontrib>Kilic, Melih</creatorcontrib><creatorcontrib>Susuz, Deniz Ece</creatorcontrib><creatorcontrib>Ilter, Ahmet Ugur</creatorcontrib><creatorcontrib>Nehas, Gokce Ekin</creatorcontrib><creatorcontrib>Ozturk, Sadik</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE eTransactions on network and service management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kuran, Mehmet Sukru</au><au>Koksal, Oguz Kaan</au><au>Kilic, Melih</au><au>Susuz, Deniz Ece</au><au>Ilter, Ahmet Ugur</au><au>Nehas, Gokce Ekin</au><au>Ozturk, Sadik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MDU-CACS: A Coordinated Forecasting-Based Cloud-Assisted Dynamic Channel Assignment Mechanism for Wi-Fi Network Clusters</atitle><jtitle>IEEE eTransactions on network and service management</jtitle><stitle>T-NSM</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>21</volume><issue>4</issue><spage>3659</spage><epage>3680</epage><pages>3659-3680</pages><issn>1932-4537</issn><eissn>1932-4537</eissn><coden>ITNSC4</coden><abstract>In this paper, we propose a cloud-assisted dynamic channel assignment system, MDU-CACS, for groups of Wi-Fi networks in a coordinated fashion to improve the performance and user experience in each network. MDU-CACS expands upon our previous mechanism, CACS, with the same design principle and framework. MDU-CACS utilizes periodic measurements of channel availability and neighbor information by the access points (AP) in all possible 2.4 GHz and 5 GHz channels. A cloud system gathers this measurement information and generates channel state predictions for each channel for each AP. Consequently, by using these predictions the cloud system searches for better a channel assignment for the whole Wi-Fi network group and sends channel change information to each AP if there is a better channel than their operating channels. We have conducted field trials of the two proposed channel assignment mechanisms over large scale actual residential Wi-Fi networks and compare their performance against widely deployed Least Congested Channel Search (LCCS) mechanism. Our results show CACS outperforms LCCS in terms of operating channel interference level with reduced number of channel changes; MDU-CACS further improves the operating channel interference over CACS albeit at a cost of somewhat higher number of channel changes. Both of our systems offer a complete framework for managing the channel assignment of Wi-Fi networks considering dynamically varying wireless channel states and organically changing Wi-Fi network topologies following realistic residential Wi-Fi network environments.</abstract><pub>IEEE</pub><doi>10.1109/TNSM.2024.3412670</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-8742-2799</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4537
ispartof IEEE eTransactions on network and service management, 2024-08, Vol.21 (4), p.3659-3680
issn 1932-4537
1932-4537
language eng
recordid cdi_crossref_primary_10_1109_TNSM_2024_3412670
source IEEE Electronic Library (IEL)
subjects Channel allocation
channel assignment
Channel estimation
cloud
forecasting
IEEE 802.11
Interference
multi-dwelling unit
Optimization
Wi-Fi
Wireless fidelity
Wireless networks
title MDU-CACS: A Coordinated Forecasting-Based Cloud-Assisted Dynamic Channel Assignment Mechanism for Wi-Fi Network Clusters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A49%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MDU-CACS:%20A%20Coordinated%20Forecasting-Based%20Cloud-Assisted%20Dynamic%20Channel%20Assignment%20Mechanism%20for%20Wi-Fi%20Network%20Clusters&rft.jtitle=IEEE%20eTransactions%20on%20network%20and%20service%20management&rft.au=Kuran,%20Mehmet%20Sukru&rft.date=2024-08-01&rft.volume=21&rft.issue=4&rft.spage=3659&rft.epage=3680&rft.pages=3659-3680&rft.issn=1932-4537&rft.eissn=1932-4537&rft.coden=ITNSC4&rft_id=info:doi/10.1109/TNSM.2024.3412670&rft_dat=%3Ccrossref_RIE%3E10_1109_TNSM_2024_3412670%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10554546&rfr_iscdi=true