MDU-CACS: A Coordinated Forecasting-Based Cloud-Assisted Dynamic Channel Assignment Mechanism for Wi-Fi Network Clusters
In this paper, we propose a cloud-assisted dynamic channel assignment system, MDU-CACS, for groups of Wi-Fi networks in a coordinated fashion to improve the performance and user experience in each network. MDU-CACS expands upon our previous mechanism, CACS, with the same design principle and framewo...
Gespeichert in:
Veröffentlicht in: | IEEE eTransactions on network and service management 2024-08, Vol.21 (4), p.3659-3680 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3680 |
---|---|
container_issue | 4 |
container_start_page | 3659 |
container_title | IEEE eTransactions on network and service management |
container_volume | 21 |
creator | Kuran, Mehmet Sukru Koksal, Oguz Kaan Kilic, Melih Susuz, Deniz Ece Ilter, Ahmet Ugur Nehas, Gokce Ekin Ozturk, Sadik |
description | In this paper, we propose a cloud-assisted dynamic channel assignment system, MDU-CACS, for groups of Wi-Fi networks in a coordinated fashion to improve the performance and user experience in each network. MDU-CACS expands upon our previous mechanism, CACS, with the same design principle and framework. MDU-CACS utilizes periodic measurements of channel availability and neighbor information by the access points (AP) in all possible 2.4 GHz and 5 GHz channels. A cloud system gathers this measurement information and generates channel state predictions for each channel for each AP. Consequently, by using these predictions the cloud system searches for better a channel assignment for the whole Wi-Fi network group and sends channel change information to each AP if there is a better channel than their operating channels. We have conducted field trials of the two proposed channel assignment mechanisms over large scale actual residential Wi-Fi networks and compare their performance against widely deployed Least Congested Channel Search (LCCS) mechanism. Our results show CACS outperforms LCCS in terms of operating channel interference level with reduced number of channel changes; MDU-CACS further improves the operating channel interference over CACS albeit at a cost of somewhat higher number of channel changes. Both of our systems offer a complete framework for managing the channel assignment of Wi-Fi networks considering dynamically varying wireless channel states and organically changing Wi-Fi network topologies following realistic residential Wi-Fi network environments. |
doi_str_mv | 10.1109/TNSM.2024.3412670 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNSM_2024_3412670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10554546</ieee_id><sourcerecordid>10_1109_TNSM_2024_3412670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-fed3942194a0470f77f9ec91279702dff419874181e68188e5e6c1642556d40b3</originalsourceid><addsrcrecordid>eNpNkM9PwjAUxxujiYj-ASYe-g8M-7p2Xb3NIWoCeADicanbK1ZhM-2I8t-7BQ6c3sv31-FDyC2wEQDT98v5YjbijItRLIAnip2RAeiYR0LG6vzkvyRXIXwxJlPQfED-ZuNVlGf54oFmNG8aX7natFjRSeOxNKF19Tp6NKFT8k2zq6IsBBf6wHhfm60raf5p6ho3tDfW9Rbrls6w7EQXttQ2nr67aOLoHNvfxn93K7uu7sM1ubBmE_DmeIdkNXla5i_R9O35Nc-mUckhbSOLVawFBy0ME4pZpazGUgNXWjFeWStAp0pACpikkKYoMSkhEVzKpBLsIx4SOOyWvgnBoy1-vNsavy-AFT26okdX9OiKI7quc3foOEQ8yUsppEjif77Xae0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>MDU-CACS: A Coordinated Forecasting-Based Cloud-Assisted Dynamic Channel Assignment Mechanism for Wi-Fi Network Clusters</title><source>IEEE Electronic Library (IEL)</source><creator>Kuran, Mehmet Sukru ; Koksal, Oguz Kaan ; Kilic, Melih ; Susuz, Deniz Ece ; Ilter, Ahmet Ugur ; Nehas, Gokce Ekin ; Ozturk, Sadik</creator><creatorcontrib>Kuran, Mehmet Sukru ; Koksal, Oguz Kaan ; Kilic, Melih ; Susuz, Deniz Ece ; Ilter, Ahmet Ugur ; Nehas, Gokce Ekin ; Ozturk, Sadik</creatorcontrib><description>In this paper, we propose a cloud-assisted dynamic channel assignment system, MDU-CACS, for groups of Wi-Fi networks in a coordinated fashion to improve the performance and user experience in each network. MDU-CACS expands upon our previous mechanism, CACS, with the same design principle and framework. MDU-CACS utilizes periodic measurements of channel availability and neighbor information by the access points (AP) in all possible 2.4 GHz and 5 GHz channels. A cloud system gathers this measurement information and generates channel state predictions for each channel for each AP. Consequently, by using these predictions the cloud system searches for better a channel assignment for the whole Wi-Fi network group and sends channel change information to each AP if there is a better channel than their operating channels. We have conducted field trials of the two proposed channel assignment mechanisms over large scale actual residential Wi-Fi networks and compare their performance against widely deployed Least Congested Channel Search (LCCS) mechanism. Our results show CACS outperforms LCCS in terms of operating channel interference level with reduced number of channel changes; MDU-CACS further improves the operating channel interference over CACS albeit at a cost of somewhat higher number of channel changes. Both of our systems offer a complete framework for managing the channel assignment of Wi-Fi networks considering dynamically varying wireless channel states and organically changing Wi-Fi network topologies following realistic residential Wi-Fi network environments.</description><identifier>ISSN: 1932-4537</identifier><identifier>EISSN: 1932-4537</identifier><identifier>DOI: 10.1109/TNSM.2024.3412670</identifier><identifier>CODEN: ITNSC4</identifier><language>eng</language><publisher>IEEE</publisher><subject>Channel allocation ; channel assignment ; Channel estimation ; cloud ; forecasting ; IEEE 802.11 ; Interference ; multi-dwelling unit ; Optimization ; Wi-Fi ; Wireless fidelity ; Wireless networks</subject><ispartof>IEEE eTransactions on network and service management, 2024-08, Vol.21 (4), p.3659-3680</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c218t-fed3942194a0470f77f9ec91279702dff419874181e68188e5e6c1642556d40b3</cites><orcidid>0000-0001-8742-2799</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10554546$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10554546$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kuran, Mehmet Sukru</creatorcontrib><creatorcontrib>Koksal, Oguz Kaan</creatorcontrib><creatorcontrib>Kilic, Melih</creatorcontrib><creatorcontrib>Susuz, Deniz Ece</creatorcontrib><creatorcontrib>Ilter, Ahmet Ugur</creatorcontrib><creatorcontrib>Nehas, Gokce Ekin</creatorcontrib><creatorcontrib>Ozturk, Sadik</creatorcontrib><title>MDU-CACS: A Coordinated Forecasting-Based Cloud-Assisted Dynamic Channel Assignment Mechanism for Wi-Fi Network Clusters</title><title>IEEE eTransactions on network and service management</title><addtitle>T-NSM</addtitle><description>In this paper, we propose a cloud-assisted dynamic channel assignment system, MDU-CACS, for groups of Wi-Fi networks in a coordinated fashion to improve the performance and user experience in each network. MDU-CACS expands upon our previous mechanism, CACS, with the same design principle and framework. MDU-CACS utilizes periodic measurements of channel availability and neighbor information by the access points (AP) in all possible 2.4 GHz and 5 GHz channels. A cloud system gathers this measurement information and generates channel state predictions for each channel for each AP. Consequently, by using these predictions the cloud system searches for better a channel assignment for the whole Wi-Fi network group and sends channel change information to each AP if there is a better channel than their operating channels. We have conducted field trials of the two proposed channel assignment mechanisms over large scale actual residential Wi-Fi networks and compare their performance against widely deployed Least Congested Channel Search (LCCS) mechanism. Our results show CACS outperforms LCCS in terms of operating channel interference level with reduced number of channel changes; MDU-CACS further improves the operating channel interference over CACS albeit at a cost of somewhat higher number of channel changes. Both of our systems offer a complete framework for managing the channel assignment of Wi-Fi networks considering dynamically varying wireless channel states and organically changing Wi-Fi network topologies following realistic residential Wi-Fi network environments.</description><subject>Channel allocation</subject><subject>channel assignment</subject><subject>Channel estimation</subject><subject>cloud</subject><subject>forecasting</subject><subject>IEEE 802.11</subject><subject>Interference</subject><subject>multi-dwelling unit</subject><subject>Optimization</subject><subject>Wi-Fi</subject><subject>Wireless fidelity</subject><subject>Wireless networks</subject><issn>1932-4537</issn><issn>1932-4537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9PwjAUxxujiYj-ASYe-g8M-7p2Xb3NIWoCeADicanbK1ZhM-2I8t-7BQ6c3sv31-FDyC2wEQDT98v5YjbijItRLIAnip2RAeiYR0LG6vzkvyRXIXwxJlPQfED-ZuNVlGf54oFmNG8aX7natFjRSeOxNKF19Tp6NKFT8k2zq6IsBBf6wHhfm60raf5p6ho3tDfW9Rbrls6w7EQXttQ2nr67aOLoHNvfxn93K7uu7sM1ubBmE_DmeIdkNXla5i_R9O35Nc-mUckhbSOLVawFBy0ME4pZpazGUgNXWjFeWStAp0pACpikkKYoMSkhEVzKpBLsIx4SOOyWvgnBoy1-vNsavy-AFT26okdX9OiKI7quc3foOEQ8yUsppEjif77Xae0</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Kuran, Mehmet Sukru</creator><creator>Koksal, Oguz Kaan</creator><creator>Kilic, Melih</creator><creator>Susuz, Deniz Ece</creator><creator>Ilter, Ahmet Ugur</creator><creator>Nehas, Gokce Ekin</creator><creator>Ozturk, Sadik</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8742-2799</orcidid></search><sort><creationdate>20240801</creationdate><title>MDU-CACS: A Coordinated Forecasting-Based Cloud-Assisted Dynamic Channel Assignment Mechanism for Wi-Fi Network Clusters</title><author>Kuran, Mehmet Sukru ; Koksal, Oguz Kaan ; Kilic, Melih ; Susuz, Deniz Ece ; Ilter, Ahmet Ugur ; Nehas, Gokce Ekin ; Ozturk, Sadik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-fed3942194a0470f77f9ec91279702dff419874181e68188e5e6c1642556d40b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Channel allocation</topic><topic>channel assignment</topic><topic>Channel estimation</topic><topic>cloud</topic><topic>forecasting</topic><topic>IEEE 802.11</topic><topic>Interference</topic><topic>multi-dwelling unit</topic><topic>Optimization</topic><topic>Wi-Fi</topic><topic>Wireless fidelity</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuran, Mehmet Sukru</creatorcontrib><creatorcontrib>Koksal, Oguz Kaan</creatorcontrib><creatorcontrib>Kilic, Melih</creatorcontrib><creatorcontrib>Susuz, Deniz Ece</creatorcontrib><creatorcontrib>Ilter, Ahmet Ugur</creatorcontrib><creatorcontrib>Nehas, Gokce Ekin</creatorcontrib><creatorcontrib>Ozturk, Sadik</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE eTransactions on network and service management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kuran, Mehmet Sukru</au><au>Koksal, Oguz Kaan</au><au>Kilic, Melih</au><au>Susuz, Deniz Ece</au><au>Ilter, Ahmet Ugur</au><au>Nehas, Gokce Ekin</au><au>Ozturk, Sadik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MDU-CACS: A Coordinated Forecasting-Based Cloud-Assisted Dynamic Channel Assignment Mechanism for Wi-Fi Network Clusters</atitle><jtitle>IEEE eTransactions on network and service management</jtitle><stitle>T-NSM</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>21</volume><issue>4</issue><spage>3659</spage><epage>3680</epage><pages>3659-3680</pages><issn>1932-4537</issn><eissn>1932-4537</eissn><coden>ITNSC4</coden><abstract>In this paper, we propose a cloud-assisted dynamic channel assignment system, MDU-CACS, for groups of Wi-Fi networks in a coordinated fashion to improve the performance and user experience in each network. MDU-CACS expands upon our previous mechanism, CACS, with the same design principle and framework. MDU-CACS utilizes periodic measurements of channel availability and neighbor information by the access points (AP) in all possible 2.4 GHz and 5 GHz channels. A cloud system gathers this measurement information and generates channel state predictions for each channel for each AP. Consequently, by using these predictions the cloud system searches for better a channel assignment for the whole Wi-Fi network group and sends channel change information to each AP if there is a better channel than their operating channels. We have conducted field trials of the two proposed channel assignment mechanisms over large scale actual residential Wi-Fi networks and compare their performance against widely deployed Least Congested Channel Search (LCCS) mechanism. Our results show CACS outperforms LCCS in terms of operating channel interference level with reduced number of channel changes; MDU-CACS further improves the operating channel interference over CACS albeit at a cost of somewhat higher number of channel changes. Both of our systems offer a complete framework for managing the channel assignment of Wi-Fi networks considering dynamically varying wireless channel states and organically changing Wi-Fi network topologies following realistic residential Wi-Fi network environments.</abstract><pub>IEEE</pub><doi>10.1109/TNSM.2024.3412670</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-8742-2799</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-4537 |
ispartof | IEEE eTransactions on network and service management, 2024-08, Vol.21 (4), p.3659-3680 |
issn | 1932-4537 1932-4537 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TNSM_2024_3412670 |
source | IEEE Electronic Library (IEL) |
subjects | Channel allocation channel assignment Channel estimation cloud forecasting IEEE 802.11 Interference multi-dwelling unit Optimization Wi-Fi Wireless fidelity Wireless networks |
title | MDU-CACS: A Coordinated Forecasting-Based Cloud-Assisted Dynamic Channel Assignment Mechanism for Wi-Fi Network Clusters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A49%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MDU-CACS:%20A%20Coordinated%20Forecasting-Based%20Cloud-Assisted%20Dynamic%20Channel%20Assignment%20Mechanism%20for%20Wi-Fi%20Network%20Clusters&rft.jtitle=IEEE%20eTransactions%20on%20network%20and%20service%20management&rft.au=Kuran,%20Mehmet%20Sukru&rft.date=2024-08-01&rft.volume=21&rft.issue=4&rft.spage=3659&rft.epage=3680&rft.pages=3659-3680&rft.issn=1932-4537&rft.eissn=1932-4537&rft.coden=ITNSC4&rft_id=info:doi/10.1109/TNSM.2024.3412670&rft_dat=%3Ccrossref_RIE%3E10_1109_TNSM_2024_3412670%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10554546&rfr_iscdi=true |