Realizing the Carbon-Aware Service Provision in ICT System
The ever-growing carbon emission of information infrastructure accounts for a significant proportion of the global carbon emissions. Existing studies reduce carbon consumption mainly by improving power efficiency on specific facilities or energy source structures. However, these methods do not joint...
Gespeichert in:
Veröffentlicht in: | IEEE eTransactions on network and service management 2024-08, Vol.21 (4), p.4090-4103 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4103 |
---|---|
container_issue | 4 |
container_start_page | 4090 |
container_title | IEEE eTransactions on network and service management |
container_volume | 21 |
creator | Sun, Penghao Lan, Julong Hu, Yuxiang Guo, Zehua Wu, Chong Wu, Jiangxing |
description | The ever-growing carbon emission of information infrastructure accounts for a significant proportion of the global carbon emissions. Existing studies reduce carbon consumption mainly by improving power efficiency on specific facilities or energy source structures. However, these methods do not jointly consider the impact of computation and network resource distribution on carbon emission. In this paper, we propose a data-driven scheme named EcoNet using reinforcement learning to reduce carbon emissions by jointly scheduling computation and network resources. We dynamically monitor the status of the computation and network facilities using cloud-edge collaboration and software-defined networking. Based on the collected status information, we formulate the resource scheduling problem as an optimization problem, which comprehensively considers the carbon emission, electricity price, and quality of service. The problem has high computation complexity, and we solve the problem with the proposed EcoNet to achieve efficient scheduling and near-optimal performance based on the collected network status information. The evaluation results show that EcoNet can maintain good Quality of Service and save at least 17% of the overall cost considering the electricity bills and carbon emissions. |
doi_str_mv | 10.1109/TNSM.2024.3385484 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNSM_2024_3385484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10500310</ieee_id><sourcerecordid>3096369867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-d2c7c31e060d8c47bb95ca31ed64e583bf27cfe125f90695ee4aecd00d4e39343</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFZ_gOAh4Dlx9jNZbyX4Uagf2Hpeks1Et7RJ3U0r9deb0h56mpfheWfgIeSaQkIp6LvZ6_QlYcBEwnkmRSZOyIBqzmIheXp6lM_JRQhzAJlRzQbk_gOLhftzzVfUfWOUF75sm3j0W3iMpug3zmL07tuNC65tItdE43wWTbehw-UlOauLRcCrwxySz8eHWf4cT96exvloElsmVBdXzKaWUwQFVWZFWpZa2qJfVEqgzHhZs9TWSJmsNSgtEUWBtgKoBHLNBR-S2_3dlW9_1hg6M2_XvulfGg5acaUzlfYU3VPWtyF4rM3Ku2Xht4aC2SkyO0Vmp8gcFPWdm33HIeIRLwE4Bf4P7QRhdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3096369867</pqid></control><display><type>article</type><title>Realizing the Carbon-Aware Service Provision in ICT System</title><source>IEEE Electronic Library (IEL)</source><creator>Sun, Penghao ; Lan, Julong ; Hu, Yuxiang ; Guo, Zehua ; Wu, Chong ; Wu, Jiangxing</creator><creatorcontrib>Sun, Penghao ; Lan, Julong ; Hu, Yuxiang ; Guo, Zehua ; Wu, Chong ; Wu, Jiangxing</creatorcontrib><description>The ever-growing carbon emission of information infrastructure accounts for a significant proportion of the global carbon emissions. Existing studies reduce carbon consumption mainly by improving power efficiency on specific facilities or energy source structures. However, these methods do not jointly consider the impact of computation and network resource distribution on carbon emission. In this paper, we propose a data-driven scheme named EcoNet using reinforcement learning to reduce carbon emissions by jointly scheduling computation and network resources. We dynamically monitor the status of the computation and network facilities using cloud-edge collaboration and software-defined networking. Based on the collected status information, we formulate the resource scheduling problem as an optimization problem, which comprehensively considers the carbon emission, electricity price, and quality of service. The problem has high computation complexity, and we solve the problem with the proposed EcoNet to achieve efficient scheduling and near-optimal performance based on the collected network status information. The evaluation results show that EcoNet can maintain good Quality of Service and save at least 17% of the overall cost considering the electricity bills and carbon emissions.</description><identifier>ISSN: 1932-4537</identifier><identifier>EISSN: 1932-4537</identifier><identifier>DOI: 10.1109/TNSM.2024.3385484</identifier><identifier>CODEN: ITNSC4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Carbon ; Carbon dioxide ; Carbon neutralization ; cloud-edge collaboration ; Computation ; Cooling ; Data centers ; deep reinforcement learning ; Electricity ; Electricity pricing ; Emissions control ; Energy distribution ; Power efficiency ; Processor scheduling ; Quality of service ; Quality of service architectures ; Resource scheduling ; Scheduling ; Servers ; software-defined networking ; traffic scheduling</subject><ispartof>IEEE eTransactions on network and service management, 2024-08, Vol.21 (4), p.4090-4103</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-d2c7c31e060d8c47bb95ca31ed64e583bf27cfe125f90695ee4aecd00d4e39343</cites><orcidid>0000-0002-8606-9337 ; 0000-0001-7314-410X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10500310$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10500310$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sun, Penghao</creatorcontrib><creatorcontrib>Lan, Julong</creatorcontrib><creatorcontrib>Hu, Yuxiang</creatorcontrib><creatorcontrib>Guo, Zehua</creatorcontrib><creatorcontrib>Wu, Chong</creatorcontrib><creatorcontrib>Wu, Jiangxing</creatorcontrib><title>Realizing the Carbon-Aware Service Provision in ICT System</title><title>IEEE eTransactions on network and service management</title><addtitle>T-NSM</addtitle><description>The ever-growing carbon emission of information infrastructure accounts for a significant proportion of the global carbon emissions. Existing studies reduce carbon consumption mainly by improving power efficiency on specific facilities or energy source structures. However, these methods do not jointly consider the impact of computation and network resource distribution on carbon emission. In this paper, we propose a data-driven scheme named EcoNet using reinforcement learning to reduce carbon emissions by jointly scheduling computation and network resources. We dynamically monitor the status of the computation and network facilities using cloud-edge collaboration and software-defined networking. Based on the collected status information, we formulate the resource scheduling problem as an optimization problem, which comprehensively considers the carbon emission, electricity price, and quality of service. The problem has high computation complexity, and we solve the problem with the proposed EcoNet to achieve efficient scheduling and near-optimal performance based on the collected network status information. The evaluation results show that EcoNet can maintain good Quality of Service and save at least 17% of the overall cost considering the electricity bills and carbon emissions.</description><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon neutralization</subject><subject>cloud-edge collaboration</subject><subject>Computation</subject><subject>Cooling</subject><subject>Data centers</subject><subject>deep reinforcement learning</subject><subject>Electricity</subject><subject>Electricity pricing</subject><subject>Emissions control</subject><subject>Energy distribution</subject><subject>Power efficiency</subject><subject>Processor scheduling</subject><subject>Quality of service</subject><subject>Quality of service architectures</subject><subject>Resource scheduling</subject><subject>Scheduling</subject><subject>Servers</subject><subject>software-defined networking</subject><subject>traffic scheduling</subject><issn>1932-4537</issn><issn>1932-4537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFZ_gOAh4Dlx9jNZbyX4Uagf2Hpeks1Et7RJ3U0r9deb0h56mpfheWfgIeSaQkIp6LvZ6_QlYcBEwnkmRSZOyIBqzmIheXp6lM_JRQhzAJlRzQbk_gOLhftzzVfUfWOUF75sm3j0W3iMpug3zmL07tuNC65tItdE43wWTbehw-UlOauLRcCrwxySz8eHWf4cT96exvloElsmVBdXzKaWUwQFVWZFWpZa2qJfVEqgzHhZs9TWSJmsNSgtEUWBtgKoBHLNBR-S2_3dlW9_1hg6M2_XvulfGg5acaUzlfYU3VPWtyF4rM3Ku2Xht4aC2SkyO0Vmp8gcFPWdm33HIeIRLwE4Bf4P7QRhdQ</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Sun, Penghao</creator><creator>Lan, Julong</creator><creator>Hu, Yuxiang</creator><creator>Guo, Zehua</creator><creator>Wu, Chong</creator><creator>Wu, Jiangxing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8606-9337</orcidid><orcidid>https://orcid.org/0000-0001-7314-410X</orcidid></search><sort><creationdate>20240801</creationdate><title>Realizing the Carbon-Aware Service Provision in ICT System</title><author>Sun, Penghao ; Lan, Julong ; Hu, Yuxiang ; Guo, Zehua ; Wu, Chong ; Wu, Jiangxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-d2c7c31e060d8c47bb95ca31ed64e583bf27cfe125f90695ee4aecd00d4e39343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon neutralization</topic><topic>cloud-edge collaboration</topic><topic>Computation</topic><topic>Cooling</topic><topic>Data centers</topic><topic>deep reinforcement learning</topic><topic>Electricity</topic><topic>Electricity pricing</topic><topic>Emissions control</topic><topic>Energy distribution</topic><topic>Power efficiency</topic><topic>Processor scheduling</topic><topic>Quality of service</topic><topic>Quality of service architectures</topic><topic>Resource scheduling</topic><topic>Scheduling</topic><topic>Servers</topic><topic>software-defined networking</topic><topic>traffic scheduling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Penghao</creatorcontrib><creatorcontrib>Lan, Julong</creatorcontrib><creatorcontrib>Hu, Yuxiang</creatorcontrib><creatorcontrib>Guo, Zehua</creatorcontrib><creatorcontrib>Wu, Chong</creatorcontrib><creatorcontrib>Wu, Jiangxing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE eTransactions on network and service management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sun, Penghao</au><au>Lan, Julong</au><au>Hu, Yuxiang</au><au>Guo, Zehua</au><au>Wu, Chong</au><au>Wu, Jiangxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Realizing the Carbon-Aware Service Provision in ICT System</atitle><jtitle>IEEE eTransactions on network and service management</jtitle><stitle>T-NSM</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>21</volume><issue>4</issue><spage>4090</spage><epage>4103</epage><pages>4090-4103</pages><issn>1932-4537</issn><eissn>1932-4537</eissn><coden>ITNSC4</coden><abstract>The ever-growing carbon emission of information infrastructure accounts for a significant proportion of the global carbon emissions. Existing studies reduce carbon consumption mainly by improving power efficiency on specific facilities or energy source structures. However, these methods do not jointly consider the impact of computation and network resource distribution on carbon emission. In this paper, we propose a data-driven scheme named EcoNet using reinforcement learning to reduce carbon emissions by jointly scheduling computation and network resources. We dynamically monitor the status of the computation and network facilities using cloud-edge collaboration and software-defined networking. Based on the collected status information, we formulate the resource scheduling problem as an optimization problem, which comprehensively considers the carbon emission, electricity price, and quality of service. The problem has high computation complexity, and we solve the problem with the proposed EcoNet to achieve efficient scheduling and near-optimal performance based on the collected network status information. The evaluation results show that EcoNet can maintain good Quality of Service and save at least 17% of the overall cost considering the electricity bills and carbon emissions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNSM.2024.3385484</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8606-9337</orcidid><orcidid>https://orcid.org/0000-0001-7314-410X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-4537 |
ispartof | IEEE eTransactions on network and service management, 2024-08, Vol.21 (4), p.4090-4103 |
issn | 1932-4537 1932-4537 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TNSM_2024_3385484 |
source | IEEE Electronic Library (IEL) |
subjects | Carbon Carbon dioxide Carbon neutralization cloud-edge collaboration Computation Cooling Data centers deep reinforcement learning Electricity Electricity pricing Emissions control Energy distribution Power efficiency Processor scheduling Quality of service Quality of service architectures Resource scheduling Scheduling Servers software-defined networking traffic scheduling |
title | Realizing the Carbon-Aware Service Provision in ICT System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T10%3A42%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Realizing%20the%20Carbon-Aware%20Service%20Provision%20in%20ICT%20System&rft.jtitle=IEEE%20eTransactions%20on%20network%20and%20service%20management&rft.au=Sun,%20Penghao&rft.date=2024-08-01&rft.volume=21&rft.issue=4&rft.spage=4090&rft.epage=4103&rft.pages=4090-4103&rft.issn=1932-4537&rft.eissn=1932-4537&rft.coden=ITNSC4&rft_id=info:doi/10.1109/TNSM.2024.3385484&rft_dat=%3Cproquest_RIE%3E3096369867%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3096369867&rft_id=info:pmid/&rft_ieee_id=10500310&rfr_iscdi=true |