Realizing the Carbon-Aware Service Provision in ICT System

The ever-growing carbon emission of information infrastructure accounts for a significant proportion of the global carbon emissions. Existing studies reduce carbon consumption mainly by improving power efficiency on specific facilities or energy source structures. However, these methods do not joint...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE eTransactions on network and service management 2024-08, Vol.21 (4), p.4090-4103
Hauptverfasser: Sun, Penghao, Lan, Julong, Hu, Yuxiang, Guo, Zehua, Wu, Chong, Wu, Jiangxing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4103
container_issue 4
container_start_page 4090
container_title IEEE eTransactions on network and service management
container_volume 21
creator Sun, Penghao
Lan, Julong
Hu, Yuxiang
Guo, Zehua
Wu, Chong
Wu, Jiangxing
description The ever-growing carbon emission of information infrastructure accounts for a significant proportion of the global carbon emissions. Existing studies reduce carbon consumption mainly by improving power efficiency on specific facilities or energy source structures. However, these methods do not jointly consider the impact of computation and network resource distribution on carbon emission. In this paper, we propose a data-driven scheme named EcoNet using reinforcement learning to reduce carbon emissions by jointly scheduling computation and network resources. We dynamically monitor the status of the computation and network facilities using cloud-edge collaboration and software-defined networking. Based on the collected status information, we formulate the resource scheduling problem as an optimization problem, which comprehensively considers the carbon emission, electricity price, and quality of service. The problem has high computation complexity, and we solve the problem with the proposed EcoNet to achieve efficient scheduling and near-optimal performance based on the collected network status information. The evaluation results show that EcoNet can maintain good Quality of Service and save at least 17% of the overall cost considering the electricity bills and carbon emissions.
doi_str_mv 10.1109/TNSM.2024.3385484
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNSM_2024_3385484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10500310</ieee_id><sourcerecordid>3096369867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-d2c7c31e060d8c47bb95ca31ed64e583bf27cfe125f90695ee4aecd00d4e39343</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFZ_gOAh4Dlx9jNZbyX4Uagf2Hpeks1Et7RJ3U0r9deb0h56mpfheWfgIeSaQkIp6LvZ6_QlYcBEwnkmRSZOyIBqzmIheXp6lM_JRQhzAJlRzQbk_gOLhftzzVfUfWOUF75sm3j0W3iMpug3zmL07tuNC65tItdE43wWTbehw-UlOauLRcCrwxySz8eHWf4cT96exvloElsmVBdXzKaWUwQFVWZFWpZa2qJfVEqgzHhZs9TWSJmsNSgtEUWBtgKoBHLNBR-S2_3dlW9_1hg6M2_XvulfGg5acaUzlfYU3VPWtyF4rM3Ku2Xht4aC2SkyO0Vmp8gcFPWdm33HIeIRLwE4Bf4P7QRhdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3096369867</pqid></control><display><type>article</type><title>Realizing the Carbon-Aware Service Provision in ICT System</title><source>IEEE Electronic Library (IEL)</source><creator>Sun, Penghao ; Lan, Julong ; Hu, Yuxiang ; Guo, Zehua ; Wu, Chong ; Wu, Jiangxing</creator><creatorcontrib>Sun, Penghao ; Lan, Julong ; Hu, Yuxiang ; Guo, Zehua ; Wu, Chong ; Wu, Jiangxing</creatorcontrib><description>The ever-growing carbon emission of information infrastructure accounts for a significant proportion of the global carbon emissions. Existing studies reduce carbon consumption mainly by improving power efficiency on specific facilities or energy source structures. However, these methods do not jointly consider the impact of computation and network resource distribution on carbon emission. In this paper, we propose a data-driven scheme named EcoNet using reinforcement learning to reduce carbon emissions by jointly scheduling computation and network resources. We dynamically monitor the status of the computation and network facilities using cloud-edge collaboration and software-defined networking. Based on the collected status information, we formulate the resource scheduling problem as an optimization problem, which comprehensively considers the carbon emission, electricity price, and quality of service. The problem has high computation complexity, and we solve the problem with the proposed EcoNet to achieve efficient scheduling and near-optimal performance based on the collected network status information. The evaluation results show that EcoNet can maintain good Quality of Service and save at least 17% of the overall cost considering the electricity bills and carbon emissions.</description><identifier>ISSN: 1932-4537</identifier><identifier>EISSN: 1932-4537</identifier><identifier>DOI: 10.1109/TNSM.2024.3385484</identifier><identifier>CODEN: ITNSC4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Carbon ; Carbon dioxide ; Carbon neutralization ; cloud-edge collaboration ; Computation ; Cooling ; Data centers ; deep reinforcement learning ; Electricity ; Electricity pricing ; Emissions control ; Energy distribution ; Power efficiency ; Processor scheduling ; Quality of service ; Quality of service architectures ; Resource scheduling ; Scheduling ; Servers ; software-defined networking ; traffic scheduling</subject><ispartof>IEEE eTransactions on network and service management, 2024-08, Vol.21 (4), p.4090-4103</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-d2c7c31e060d8c47bb95ca31ed64e583bf27cfe125f90695ee4aecd00d4e39343</cites><orcidid>0000-0002-8606-9337 ; 0000-0001-7314-410X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10500310$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10500310$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sun, Penghao</creatorcontrib><creatorcontrib>Lan, Julong</creatorcontrib><creatorcontrib>Hu, Yuxiang</creatorcontrib><creatorcontrib>Guo, Zehua</creatorcontrib><creatorcontrib>Wu, Chong</creatorcontrib><creatorcontrib>Wu, Jiangxing</creatorcontrib><title>Realizing the Carbon-Aware Service Provision in ICT System</title><title>IEEE eTransactions on network and service management</title><addtitle>T-NSM</addtitle><description>The ever-growing carbon emission of information infrastructure accounts for a significant proportion of the global carbon emissions. Existing studies reduce carbon consumption mainly by improving power efficiency on specific facilities or energy source structures. However, these methods do not jointly consider the impact of computation and network resource distribution on carbon emission. In this paper, we propose a data-driven scheme named EcoNet using reinforcement learning to reduce carbon emissions by jointly scheduling computation and network resources. We dynamically monitor the status of the computation and network facilities using cloud-edge collaboration and software-defined networking. Based on the collected status information, we formulate the resource scheduling problem as an optimization problem, which comprehensively considers the carbon emission, electricity price, and quality of service. The problem has high computation complexity, and we solve the problem with the proposed EcoNet to achieve efficient scheduling and near-optimal performance based on the collected network status information. The evaluation results show that EcoNet can maintain good Quality of Service and save at least 17% of the overall cost considering the electricity bills and carbon emissions.</description><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon neutralization</subject><subject>cloud-edge collaboration</subject><subject>Computation</subject><subject>Cooling</subject><subject>Data centers</subject><subject>deep reinforcement learning</subject><subject>Electricity</subject><subject>Electricity pricing</subject><subject>Emissions control</subject><subject>Energy distribution</subject><subject>Power efficiency</subject><subject>Processor scheduling</subject><subject>Quality of service</subject><subject>Quality of service architectures</subject><subject>Resource scheduling</subject><subject>Scheduling</subject><subject>Servers</subject><subject>software-defined networking</subject><subject>traffic scheduling</subject><issn>1932-4537</issn><issn>1932-4537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFZ_gOAh4Dlx9jNZbyX4Uagf2Hpeks1Et7RJ3U0r9deb0h56mpfheWfgIeSaQkIp6LvZ6_QlYcBEwnkmRSZOyIBqzmIheXp6lM_JRQhzAJlRzQbk_gOLhftzzVfUfWOUF75sm3j0W3iMpug3zmL07tuNC65tItdE43wWTbehw-UlOauLRcCrwxySz8eHWf4cT96exvloElsmVBdXzKaWUwQFVWZFWpZa2qJfVEqgzHhZs9TWSJmsNSgtEUWBtgKoBHLNBR-S2_3dlW9_1hg6M2_XvulfGg5acaUzlfYU3VPWtyF4rM3Ku2Xht4aC2SkyO0Vmp8gcFPWdm33HIeIRLwE4Bf4P7QRhdQ</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Sun, Penghao</creator><creator>Lan, Julong</creator><creator>Hu, Yuxiang</creator><creator>Guo, Zehua</creator><creator>Wu, Chong</creator><creator>Wu, Jiangxing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8606-9337</orcidid><orcidid>https://orcid.org/0000-0001-7314-410X</orcidid></search><sort><creationdate>20240801</creationdate><title>Realizing the Carbon-Aware Service Provision in ICT System</title><author>Sun, Penghao ; Lan, Julong ; Hu, Yuxiang ; Guo, Zehua ; Wu, Chong ; Wu, Jiangxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-d2c7c31e060d8c47bb95ca31ed64e583bf27cfe125f90695ee4aecd00d4e39343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon neutralization</topic><topic>cloud-edge collaboration</topic><topic>Computation</topic><topic>Cooling</topic><topic>Data centers</topic><topic>deep reinforcement learning</topic><topic>Electricity</topic><topic>Electricity pricing</topic><topic>Emissions control</topic><topic>Energy distribution</topic><topic>Power efficiency</topic><topic>Processor scheduling</topic><topic>Quality of service</topic><topic>Quality of service architectures</topic><topic>Resource scheduling</topic><topic>Scheduling</topic><topic>Servers</topic><topic>software-defined networking</topic><topic>traffic scheduling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Penghao</creatorcontrib><creatorcontrib>Lan, Julong</creatorcontrib><creatorcontrib>Hu, Yuxiang</creatorcontrib><creatorcontrib>Guo, Zehua</creatorcontrib><creatorcontrib>Wu, Chong</creatorcontrib><creatorcontrib>Wu, Jiangxing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE eTransactions on network and service management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sun, Penghao</au><au>Lan, Julong</au><au>Hu, Yuxiang</au><au>Guo, Zehua</au><au>Wu, Chong</au><au>Wu, Jiangxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Realizing the Carbon-Aware Service Provision in ICT System</atitle><jtitle>IEEE eTransactions on network and service management</jtitle><stitle>T-NSM</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>21</volume><issue>4</issue><spage>4090</spage><epage>4103</epage><pages>4090-4103</pages><issn>1932-4537</issn><eissn>1932-4537</eissn><coden>ITNSC4</coden><abstract>The ever-growing carbon emission of information infrastructure accounts for a significant proportion of the global carbon emissions. Existing studies reduce carbon consumption mainly by improving power efficiency on specific facilities or energy source structures. However, these methods do not jointly consider the impact of computation and network resource distribution on carbon emission. In this paper, we propose a data-driven scheme named EcoNet using reinforcement learning to reduce carbon emissions by jointly scheduling computation and network resources. We dynamically monitor the status of the computation and network facilities using cloud-edge collaboration and software-defined networking. Based on the collected status information, we formulate the resource scheduling problem as an optimization problem, which comprehensively considers the carbon emission, electricity price, and quality of service. The problem has high computation complexity, and we solve the problem with the proposed EcoNet to achieve efficient scheduling and near-optimal performance based on the collected network status information. The evaluation results show that EcoNet can maintain good Quality of Service and save at least 17% of the overall cost considering the electricity bills and carbon emissions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNSM.2024.3385484</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8606-9337</orcidid><orcidid>https://orcid.org/0000-0001-7314-410X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4537
ispartof IEEE eTransactions on network and service management, 2024-08, Vol.21 (4), p.4090-4103
issn 1932-4537
1932-4537
language eng
recordid cdi_crossref_primary_10_1109_TNSM_2024_3385484
source IEEE Electronic Library (IEL)
subjects Carbon
Carbon dioxide
Carbon neutralization
cloud-edge collaboration
Computation
Cooling
Data centers
deep reinforcement learning
Electricity
Electricity pricing
Emissions control
Energy distribution
Power efficiency
Processor scheduling
Quality of service
Quality of service architectures
Resource scheduling
Scheduling
Servers
software-defined networking
traffic scheduling
title Realizing the Carbon-Aware Service Provision in ICT System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T10%3A42%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Realizing%20the%20Carbon-Aware%20Service%20Provision%20in%20ICT%20System&rft.jtitle=IEEE%20eTransactions%20on%20network%20and%20service%20management&rft.au=Sun,%20Penghao&rft.date=2024-08-01&rft.volume=21&rft.issue=4&rft.spage=4090&rft.epage=4103&rft.pages=4090-4103&rft.issn=1932-4537&rft.eissn=1932-4537&rft.coden=ITNSC4&rft_id=info:doi/10.1109/TNSM.2024.3385484&rft_dat=%3Cproquest_RIE%3E3096369867%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3096369867&rft_id=info:pmid/&rft_ieee_id=10500310&rfr_iscdi=true