AI-Based Radio Resource Management and Trajectory Design for IRS-UAV-Assisted PD-NOMA Communication

This paper proposes the use of unmanned aerial vehicles (UAVs) with intelligent reflecting surfaces (IRS) to reflect signals from the industrial Internet of things (IIoT) to the destination, where power-domain non-orthogonal multiple access (PD-NOMA) is used in the uplink. The objective of our paper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE eTransactions on network and service management 2024-06, Vol.21 (3), p.3385-3400
Hauptverfasser: Hariz, Hussein Muhi, Mosaddegh, Saeed Sheikh Zadeh, Mokari, Nader, Javan, Mohammad Reza, Arand, Bijan Abbasi, Jorswieck, Eduard A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3400
container_issue 3
container_start_page 3385
container_title IEEE eTransactions on network and service management
container_volume 21
creator Hariz, Hussein Muhi
Mosaddegh, Saeed Sheikh Zadeh
Mokari, Nader
Javan, Mohammad Reza
Arand, Bijan Abbasi
Jorswieck, Eduard A.
description This paper proposes the use of unmanned aerial vehicles (UAVs) with intelligent reflecting surfaces (IRS) to reflect signals from the industrial Internet of things (IIoT) to the destination, where power-domain non-orthogonal multiple access (PD-NOMA) is used in the uplink. The objective of our paper is to minimize the average age of information (AAoI) of users affected by transmit power constraint, and UAV movement restrictions. By optimizing transmit power, sub-carriers, trajectory, and phase shift matrix elements, UAV-IRS on IIoT networks can improve the freshness of the data collected from IIoT devices. The nonlinear integer optimization problem leads to an NP-hard problem, which is practically difficult to solve. We exploit the powerful reinforcement learning algorithm, i.e., the proximal policy optimization (PPO). The numerical results illustrate the benefits of IRS-enabled UAV communication systems. By using IRSs and the PPO algorithm, UAVs can achieve better performance than other methods that consider a fixed IRS, random deployment, other RL methods(A2C), and the impact of UAV jitter.
doi_str_mv 10.1109/TNSM.2024.3364164
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNSM_2024_3364164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10430453</ieee_id><sourcerecordid>3081861956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-adbc371f71af90d4c9a243fbd49e4decbfa5cde7e9c904c55a03a06b57c42b413</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqXwAUgsLLF28StJvQzlVakP1Adby7EnVSoSFztd9O9J1S66mlmce0dzEHpkdMAYVS-r2XI64JTLgRCpZKm8Qj2mBCcyEdn1xX6L7mLcUpoMmeI9ZPMxeTURHF4YV3m8gOj3wQKemsZsoIamxaZxeBXMFmzrwwG_Qaw2DS59wOPFkqzzH5LHWMW2K_l-I7P5NMcjX9f7prKmrXxzj25K8xvh4Tz7aP3xvhp9kcn8czzKJ8RyJVtiXGFFxsqMmVJRJ60yXIqycFKBdGCL0iTWQQbKKiptkhgqDE2LJLOSF5KJPno-9e6C_9tDbPW2-6XpTmpBh2yYMpWkHcVOlA0-xgCl3oWqNuGgGdVHl_roUh9d6rPLLvN0ylQAcMFLQTun4h_YCG_v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081861956</pqid></control><display><type>article</type><title>AI-Based Radio Resource Management and Trajectory Design for IRS-UAV-Assisted PD-NOMA Communication</title><source>IEEE Electronic Library (IEL)</source><creator>Hariz, Hussein Muhi ; Mosaddegh, Saeed Sheikh Zadeh ; Mokari, Nader ; Javan, Mohammad Reza ; Arand, Bijan Abbasi ; Jorswieck, Eduard A.</creator><creatorcontrib>Hariz, Hussein Muhi ; Mosaddegh, Saeed Sheikh Zadeh ; Mokari, Nader ; Javan, Mohammad Reza ; Arand, Bijan Abbasi ; Jorswieck, Eduard A.</creatorcontrib><description>This paper proposes the use of unmanned aerial vehicles (UAVs) with intelligent reflecting surfaces (IRS) to reflect signals from the industrial Internet of things (IIoT) to the destination, where power-domain non-orthogonal multiple access (PD-NOMA) is used in the uplink. The objective of our paper is to minimize the average age of information (AAoI) of users affected by transmit power constraint, and UAV movement restrictions. By optimizing transmit power, sub-carriers, trajectory, and phase shift matrix elements, UAV-IRS on IIoT networks can improve the freshness of the data collected from IIoT devices. The nonlinear integer optimization problem leads to an NP-hard problem, which is practically difficult to solve. We exploit the powerful reinforcement learning algorithm, i.e., the proximal policy optimization (PPO). The numerical results illustrate the benefits of IRS-enabled UAV communication systems. By using IRSs and the PPO algorithm, UAVs can achieve better performance than other methods that consider a fixed IRS, random deployment, other RL methods(A2C), and the impact of UAV jitter.</description><identifier>ISSN: 1932-4537</identifier><identifier>EISSN: 1932-4537</identifier><identifier>DOI: 10.1109/TNSM.2024.3364164</identifier><identifier>CODEN: ITNSC4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>age of information ; Algorithms ; Array signal processing ; Autonomous aerial vehicles ; Buildings ; Carrier mobility ; Communications systems ; Industrial applications ; Industrial Internet of Things ; intelligent reflecting surface ; Internet of Things ; Machine learning ; NOMA ; non-orthogonal multiple access ; Nonorthogonal multiple access ; Optimization ; Power ; proximal policy optimization ; Reconfigurable intelligent surfaces ; Resource management ; Trajectory ; trajectory design ; Unmanned aerial vehicles</subject><ispartof>IEEE eTransactions on network and service management, 2024-06, Vol.21 (3), p.3385-3400</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-adbc371f71af90d4c9a243fbd49e4decbfa5cde7e9c904c55a03a06b57c42b413</citedby><cites>FETCH-LOGICAL-c294t-adbc371f71af90d4c9a243fbd49e4decbfa5cde7e9c904c55a03a06b57c42b413</cites><orcidid>0000-0001-5364-8888 ; 0000-0003-3910-9153 ; 0000-0001-7893-8435 ; 0000-0001-9364-315X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10430453$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10430453$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hariz, Hussein Muhi</creatorcontrib><creatorcontrib>Mosaddegh, Saeed Sheikh Zadeh</creatorcontrib><creatorcontrib>Mokari, Nader</creatorcontrib><creatorcontrib>Javan, Mohammad Reza</creatorcontrib><creatorcontrib>Arand, Bijan Abbasi</creatorcontrib><creatorcontrib>Jorswieck, Eduard A.</creatorcontrib><title>AI-Based Radio Resource Management and Trajectory Design for IRS-UAV-Assisted PD-NOMA Communication</title><title>IEEE eTransactions on network and service management</title><addtitle>T-NSM</addtitle><description>This paper proposes the use of unmanned aerial vehicles (UAVs) with intelligent reflecting surfaces (IRS) to reflect signals from the industrial Internet of things (IIoT) to the destination, where power-domain non-orthogonal multiple access (PD-NOMA) is used in the uplink. The objective of our paper is to minimize the average age of information (AAoI) of users affected by transmit power constraint, and UAV movement restrictions. By optimizing transmit power, sub-carriers, trajectory, and phase shift matrix elements, UAV-IRS on IIoT networks can improve the freshness of the data collected from IIoT devices. The nonlinear integer optimization problem leads to an NP-hard problem, which is practically difficult to solve. We exploit the powerful reinforcement learning algorithm, i.e., the proximal policy optimization (PPO). The numerical results illustrate the benefits of IRS-enabled UAV communication systems. By using IRSs and the PPO algorithm, UAVs can achieve better performance than other methods that consider a fixed IRS, random deployment, other RL methods(A2C), and the impact of UAV jitter.</description><subject>age of information</subject><subject>Algorithms</subject><subject>Array signal processing</subject><subject>Autonomous aerial vehicles</subject><subject>Buildings</subject><subject>Carrier mobility</subject><subject>Communications systems</subject><subject>Industrial applications</subject><subject>Industrial Internet of Things</subject><subject>intelligent reflecting surface</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>NOMA</subject><subject>non-orthogonal multiple access</subject><subject>Nonorthogonal multiple access</subject><subject>Optimization</subject><subject>Power</subject><subject>proximal policy optimization</subject><subject>Reconfigurable intelligent surfaces</subject><subject>Resource management</subject><subject>Trajectory</subject><subject>trajectory design</subject><subject>Unmanned aerial vehicles</subject><issn>1932-4537</issn><issn>1932-4537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOwzAQRS0EEqXwAUgsLLF28StJvQzlVakP1Adby7EnVSoSFztd9O9J1S66mlmce0dzEHpkdMAYVS-r2XI64JTLgRCpZKm8Qj2mBCcyEdn1xX6L7mLcUpoMmeI9ZPMxeTURHF4YV3m8gOj3wQKemsZsoIamxaZxeBXMFmzrwwG_Qaw2DS59wOPFkqzzH5LHWMW2K_l-I7P5NMcjX9f7prKmrXxzj25K8xvh4Tz7aP3xvhp9kcn8czzKJ8RyJVtiXGFFxsqMmVJRJ60yXIqycFKBdGCL0iTWQQbKKiptkhgqDE2LJLOSF5KJPno-9e6C_9tDbPW2-6XpTmpBh2yYMpWkHcVOlA0-xgCl3oWqNuGgGdVHl_roUh9d6rPLLvN0ylQAcMFLQTun4h_YCG_v</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Hariz, Hussein Muhi</creator><creator>Mosaddegh, Saeed Sheikh Zadeh</creator><creator>Mokari, Nader</creator><creator>Javan, Mohammad Reza</creator><creator>Arand, Bijan Abbasi</creator><creator>Jorswieck, Eduard A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5364-8888</orcidid><orcidid>https://orcid.org/0000-0003-3910-9153</orcidid><orcidid>https://orcid.org/0000-0001-7893-8435</orcidid><orcidid>https://orcid.org/0000-0001-9364-315X</orcidid></search><sort><creationdate>20240601</creationdate><title>AI-Based Radio Resource Management and Trajectory Design for IRS-UAV-Assisted PD-NOMA Communication</title><author>Hariz, Hussein Muhi ; Mosaddegh, Saeed Sheikh Zadeh ; Mokari, Nader ; Javan, Mohammad Reza ; Arand, Bijan Abbasi ; Jorswieck, Eduard A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-adbc371f71af90d4c9a243fbd49e4decbfa5cde7e9c904c55a03a06b57c42b413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>age of information</topic><topic>Algorithms</topic><topic>Array signal processing</topic><topic>Autonomous aerial vehicles</topic><topic>Buildings</topic><topic>Carrier mobility</topic><topic>Communications systems</topic><topic>Industrial applications</topic><topic>Industrial Internet of Things</topic><topic>intelligent reflecting surface</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>NOMA</topic><topic>non-orthogonal multiple access</topic><topic>Nonorthogonal multiple access</topic><topic>Optimization</topic><topic>Power</topic><topic>proximal policy optimization</topic><topic>Reconfigurable intelligent surfaces</topic><topic>Resource management</topic><topic>Trajectory</topic><topic>trajectory design</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hariz, Hussein Muhi</creatorcontrib><creatorcontrib>Mosaddegh, Saeed Sheikh Zadeh</creatorcontrib><creatorcontrib>Mokari, Nader</creatorcontrib><creatorcontrib>Javan, Mohammad Reza</creatorcontrib><creatorcontrib>Arand, Bijan Abbasi</creatorcontrib><creatorcontrib>Jorswieck, Eduard A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE eTransactions on network and service management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hariz, Hussein Muhi</au><au>Mosaddegh, Saeed Sheikh Zadeh</au><au>Mokari, Nader</au><au>Javan, Mohammad Reza</au><au>Arand, Bijan Abbasi</au><au>Jorswieck, Eduard A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AI-Based Radio Resource Management and Trajectory Design for IRS-UAV-Assisted PD-NOMA Communication</atitle><jtitle>IEEE eTransactions on network and service management</jtitle><stitle>T-NSM</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>21</volume><issue>3</issue><spage>3385</spage><epage>3400</epage><pages>3385-3400</pages><issn>1932-4537</issn><eissn>1932-4537</eissn><coden>ITNSC4</coden><abstract>This paper proposes the use of unmanned aerial vehicles (UAVs) with intelligent reflecting surfaces (IRS) to reflect signals from the industrial Internet of things (IIoT) to the destination, where power-domain non-orthogonal multiple access (PD-NOMA) is used in the uplink. The objective of our paper is to minimize the average age of information (AAoI) of users affected by transmit power constraint, and UAV movement restrictions. By optimizing transmit power, sub-carriers, trajectory, and phase shift matrix elements, UAV-IRS on IIoT networks can improve the freshness of the data collected from IIoT devices. The nonlinear integer optimization problem leads to an NP-hard problem, which is practically difficult to solve. We exploit the powerful reinforcement learning algorithm, i.e., the proximal policy optimization (PPO). The numerical results illustrate the benefits of IRS-enabled UAV communication systems. By using IRSs and the PPO algorithm, UAVs can achieve better performance than other methods that consider a fixed IRS, random deployment, other RL methods(A2C), and the impact of UAV jitter.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNSM.2024.3364164</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-5364-8888</orcidid><orcidid>https://orcid.org/0000-0003-3910-9153</orcidid><orcidid>https://orcid.org/0000-0001-7893-8435</orcidid><orcidid>https://orcid.org/0000-0001-9364-315X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4537
ispartof IEEE eTransactions on network and service management, 2024-06, Vol.21 (3), p.3385-3400
issn 1932-4537
1932-4537
language eng
recordid cdi_crossref_primary_10_1109_TNSM_2024_3364164
source IEEE Electronic Library (IEL)
subjects age of information
Algorithms
Array signal processing
Autonomous aerial vehicles
Buildings
Carrier mobility
Communications systems
Industrial applications
Industrial Internet of Things
intelligent reflecting surface
Internet of Things
Machine learning
NOMA
non-orthogonal multiple access
Nonorthogonal multiple access
Optimization
Power
proximal policy optimization
Reconfigurable intelligent surfaces
Resource management
Trajectory
trajectory design
Unmanned aerial vehicles
title AI-Based Radio Resource Management and Trajectory Design for IRS-UAV-Assisted PD-NOMA Communication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A15%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AI-Based%20Radio%20Resource%20Management%20and%20Trajectory%20Design%20for%20IRS-UAV-Assisted%20PD-NOMA%20Communication&rft.jtitle=IEEE%20eTransactions%20on%20network%20and%20service%20management&rft.au=Hariz,%20Hussein%20Muhi&rft.date=2024-06-01&rft.volume=21&rft.issue=3&rft.spage=3385&rft.epage=3400&rft.pages=3385-3400&rft.issn=1932-4537&rft.eissn=1932-4537&rft.coden=ITNSC4&rft_id=info:doi/10.1109/TNSM.2024.3364164&rft_dat=%3Cproquest_RIE%3E3081861956%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3081861956&rft_id=info:pmid/&rft_ieee_id=10430453&rfr_iscdi=true