AI-Based Radio Resource Management and Trajectory Design for IRS-UAV-Assisted PD-NOMA Communication
This paper proposes the use of unmanned aerial vehicles (UAVs) with intelligent reflecting surfaces (IRS) to reflect signals from the industrial Internet of things (IIoT) to the destination, where power-domain non-orthogonal multiple access (PD-NOMA) is used in the uplink. The objective of our paper...
Gespeichert in:
Veröffentlicht in: | IEEE eTransactions on network and service management 2024-06, Vol.21 (3), p.3385-3400 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3400 |
---|---|
container_issue | 3 |
container_start_page | 3385 |
container_title | IEEE eTransactions on network and service management |
container_volume | 21 |
creator | Hariz, Hussein Muhi Mosaddegh, Saeed Sheikh Zadeh Mokari, Nader Javan, Mohammad Reza Arand, Bijan Abbasi Jorswieck, Eduard A. |
description | This paper proposes the use of unmanned aerial vehicles (UAVs) with intelligent reflecting surfaces (IRS) to reflect signals from the industrial Internet of things (IIoT) to the destination, where power-domain non-orthogonal multiple access (PD-NOMA) is used in the uplink. The objective of our paper is to minimize the average age of information (AAoI) of users affected by transmit power constraint, and UAV movement restrictions. By optimizing transmit power, sub-carriers, trajectory, and phase shift matrix elements, UAV-IRS on IIoT networks can improve the freshness of the data collected from IIoT devices. The nonlinear integer optimization problem leads to an NP-hard problem, which is practically difficult to solve. We exploit the powerful reinforcement learning algorithm, i.e., the proximal policy optimization (PPO). The numerical results illustrate the benefits of IRS-enabled UAV communication systems. By using IRSs and the PPO algorithm, UAVs can achieve better performance than other methods that consider a fixed IRS, random deployment, other RL methods(A2C), and the impact of UAV jitter. |
doi_str_mv | 10.1109/TNSM.2024.3364164 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNSM_2024_3364164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10430453</ieee_id><sourcerecordid>3081861956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-adbc371f71af90d4c9a243fbd49e4decbfa5cde7e9c904c55a03a06b57c42b413</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqXwAUgsLLF28StJvQzlVakP1Adby7EnVSoSFztd9O9J1S66mlmce0dzEHpkdMAYVS-r2XI64JTLgRCpZKm8Qj2mBCcyEdn1xX6L7mLcUpoMmeI9ZPMxeTURHF4YV3m8gOj3wQKemsZsoIamxaZxeBXMFmzrwwG_Qaw2DS59wOPFkqzzH5LHWMW2K_l-I7P5NMcjX9f7prKmrXxzj25K8xvh4Tz7aP3xvhp9kcn8czzKJ8RyJVtiXGFFxsqMmVJRJ60yXIqycFKBdGCL0iTWQQbKKiptkhgqDE2LJLOSF5KJPno-9e6C_9tDbPW2-6XpTmpBh2yYMpWkHcVOlA0-xgCl3oWqNuGgGdVHl_roUh9d6rPLLvN0ylQAcMFLQTun4h_YCG_v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081861956</pqid></control><display><type>article</type><title>AI-Based Radio Resource Management and Trajectory Design for IRS-UAV-Assisted PD-NOMA Communication</title><source>IEEE Electronic Library (IEL)</source><creator>Hariz, Hussein Muhi ; Mosaddegh, Saeed Sheikh Zadeh ; Mokari, Nader ; Javan, Mohammad Reza ; Arand, Bijan Abbasi ; Jorswieck, Eduard A.</creator><creatorcontrib>Hariz, Hussein Muhi ; Mosaddegh, Saeed Sheikh Zadeh ; Mokari, Nader ; Javan, Mohammad Reza ; Arand, Bijan Abbasi ; Jorswieck, Eduard A.</creatorcontrib><description>This paper proposes the use of unmanned aerial vehicles (UAVs) with intelligent reflecting surfaces (IRS) to reflect signals from the industrial Internet of things (IIoT) to the destination, where power-domain non-orthogonal multiple access (PD-NOMA) is used in the uplink. The objective of our paper is to minimize the average age of information (AAoI) of users affected by transmit power constraint, and UAV movement restrictions. By optimizing transmit power, sub-carriers, trajectory, and phase shift matrix elements, UAV-IRS on IIoT networks can improve the freshness of the data collected from IIoT devices. The nonlinear integer optimization problem leads to an NP-hard problem, which is practically difficult to solve. We exploit the powerful reinforcement learning algorithm, i.e., the proximal policy optimization (PPO). The numerical results illustrate the benefits of IRS-enabled UAV communication systems. By using IRSs and the PPO algorithm, UAVs can achieve better performance than other methods that consider a fixed IRS, random deployment, other RL methods(A2C), and the impact of UAV jitter.</description><identifier>ISSN: 1932-4537</identifier><identifier>EISSN: 1932-4537</identifier><identifier>DOI: 10.1109/TNSM.2024.3364164</identifier><identifier>CODEN: ITNSC4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>age of information ; Algorithms ; Array signal processing ; Autonomous aerial vehicles ; Buildings ; Carrier mobility ; Communications systems ; Industrial applications ; Industrial Internet of Things ; intelligent reflecting surface ; Internet of Things ; Machine learning ; NOMA ; non-orthogonal multiple access ; Nonorthogonal multiple access ; Optimization ; Power ; proximal policy optimization ; Reconfigurable intelligent surfaces ; Resource management ; Trajectory ; trajectory design ; Unmanned aerial vehicles</subject><ispartof>IEEE eTransactions on network and service management, 2024-06, Vol.21 (3), p.3385-3400</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-adbc371f71af90d4c9a243fbd49e4decbfa5cde7e9c904c55a03a06b57c42b413</citedby><cites>FETCH-LOGICAL-c294t-adbc371f71af90d4c9a243fbd49e4decbfa5cde7e9c904c55a03a06b57c42b413</cites><orcidid>0000-0001-5364-8888 ; 0000-0003-3910-9153 ; 0000-0001-7893-8435 ; 0000-0001-9364-315X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10430453$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10430453$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hariz, Hussein Muhi</creatorcontrib><creatorcontrib>Mosaddegh, Saeed Sheikh Zadeh</creatorcontrib><creatorcontrib>Mokari, Nader</creatorcontrib><creatorcontrib>Javan, Mohammad Reza</creatorcontrib><creatorcontrib>Arand, Bijan Abbasi</creatorcontrib><creatorcontrib>Jorswieck, Eduard A.</creatorcontrib><title>AI-Based Radio Resource Management and Trajectory Design for IRS-UAV-Assisted PD-NOMA Communication</title><title>IEEE eTransactions on network and service management</title><addtitle>T-NSM</addtitle><description>This paper proposes the use of unmanned aerial vehicles (UAVs) with intelligent reflecting surfaces (IRS) to reflect signals from the industrial Internet of things (IIoT) to the destination, where power-domain non-orthogonal multiple access (PD-NOMA) is used in the uplink. The objective of our paper is to minimize the average age of information (AAoI) of users affected by transmit power constraint, and UAV movement restrictions. By optimizing transmit power, sub-carriers, trajectory, and phase shift matrix elements, UAV-IRS on IIoT networks can improve the freshness of the data collected from IIoT devices. The nonlinear integer optimization problem leads to an NP-hard problem, which is practically difficult to solve. We exploit the powerful reinforcement learning algorithm, i.e., the proximal policy optimization (PPO). The numerical results illustrate the benefits of IRS-enabled UAV communication systems. By using IRSs and the PPO algorithm, UAVs can achieve better performance than other methods that consider a fixed IRS, random deployment, other RL methods(A2C), and the impact of UAV jitter.</description><subject>age of information</subject><subject>Algorithms</subject><subject>Array signal processing</subject><subject>Autonomous aerial vehicles</subject><subject>Buildings</subject><subject>Carrier mobility</subject><subject>Communications systems</subject><subject>Industrial applications</subject><subject>Industrial Internet of Things</subject><subject>intelligent reflecting surface</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>NOMA</subject><subject>non-orthogonal multiple access</subject><subject>Nonorthogonal multiple access</subject><subject>Optimization</subject><subject>Power</subject><subject>proximal policy optimization</subject><subject>Reconfigurable intelligent surfaces</subject><subject>Resource management</subject><subject>Trajectory</subject><subject>trajectory design</subject><subject>Unmanned aerial vehicles</subject><issn>1932-4537</issn><issn>1932-4537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOwzAQRS0EEqXwAUgsLLF28StJvQzlVakP1Adby7EnVSoSFztd9O9J1S66mlmce0dzEHpkdMAYVS-r2XI64JTLgRCpZKm8Qj2mBCcyEdn1xX6L7mLcUpoMmeI9ZPMxeTURHF4YV3m8gOj3wQKemsZsoIamxaZxeBXMFmzrwwG_Qaw2DS59wOPFkqzzH5LHWMW2K_l-I7P5NMcjX9f7prKmrXxzj25K8xvh4Tz7aP3xvhp9kcn8czzKJ8RyJVtiXGFFxsqMmVJRJ60yXIqycFKBdGCL0iTWQQbKKiptkhgqDE2LJLOSF5KJPno-9e6C_9tDbPW2-6XpTmpBh2yYMpWkHcVOlA0-xgCl3oWqNuGgGdVHl_roUh9d6rPLLvN0ylQAcMFLQTun4h_YCG_v</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Hariz, Hussein Muhi</creator><creator>Mosaddegh, Saeed Sheikh Zadeh</creator><creator>Mokari, Nader</creator><creator>Javan, Mohammad Reza</creator><creator>Arand, Bijan Abbasi</creator><creator>Jorswieck, Eduard A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5364-8888</orcidid><orcidid>https://orcid.org/0000-0003-3910-9153</orcidid><orcidid>https://orcid.org/0000-0001-7893-8435</orcidid><orcidid>https://orcid.org/0000-0001-9364-315X</orcidid></search><sort><creationdate>20240601</creationdate><title>AI-Based Radio Resource Management and Trajectory Design for IRS-UAV-Assisted PD-NOMA Communication</title><author>Hariz, Hussein Muhi ; Mosaddegh, Saeed Sheikh Zadeh ; Mokari, Nader ; Javan, Mohammad Reza ; Arand, Bijan Abbasi ; Jorswieck, Eduard A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-adbc371f71af90d4c9a243fbd49e4decbfa5cde7e9c904c55a03a06b57c42b413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>age of information</topic><topic>Algorithms</topic><topic>Array signal processing</topic><topic>Autonomous aerial vehicles</topic><topic>Buildings</topic><topic>Carrier mobility</topic><topic>Communications systems</topic><topic>Industrial applications</topic><topic>Industrial Internet of Things</topic><topic>intelligent reflecting surface</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>NOMA</topic><topic>non-orthogonal multiple access</topic><topic>Nonorthogonal multiple access</topic><topic>Optimization</topic><topic>Power</topic><topic>proximal policy optimization</topic><topic>Reconfigurable intelligent surfaces</topic><topic>Resource management</topic><topic>Trajectory</topic><topic>trajectory design</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hariz, Hussein Muhi</creatorcontrib><creatorcontrib>Mosaddegh, Saeed Sheikh Zadeh</creatorcontrib><creatorcontrib>Mokari, Nader</creatorcontrib><creatorcontrib>Javan, Mohammad Reza</creatorcontrib><creatorcontrib>Arand, Bijan Abbasi</creatorcontrib><creatorcontrib>Jorswieck, Eduard A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE eTransactions on network and service management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hariz, Hussein Muhi</au><au>Mosaddegh, Saeed Sheikh Zadeh</au><au>Mokari, Nader</au><au>Javan, Mohammad Reza</au><au>Arand, Bijan Abbasi</au><au>Jorswieck, Eduard A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AI-Based Radio Resource Management and Trajectory Design for IRS-UAV-Assisted PD-NOMA Communication</atitle><jtitle>IEEE eTransactions on network and service management</jtitle><stitle>T-NSM</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>21</volume><issue>3</issue><spage>3385</spage><epage>3400</epage><pages>3385-3400</pages><issn>1932-4537</issn><eissn>1932-4537</eissn><coden>ITNSC4</coden><abstract>This paper proposes the use of unmanned aerial vehicles (UAVs) with intelligent reflecting surfaces (IRS) to reflect signals from the industrial Internet of things (IIoT) to the destination, where power-domain non-orthogonal multiple access (PD-NOMA) is used in the uplink. The objective of our paper is to minimize the average age of information (AAoI) of users affected by transmit power constraint, and UAV movement restrictions. By optimizing transmit power, sub-carriers, trajectory, and phase shift matrix elements, UAV-IRS on IIoT networks can improve the freshness of the data collected from IIoT devices. The nonlinear integer optimization problem leads to an NP-hard problem, which is practically difficult to solve. We exploit the powerful reinforcement learning algorithm, i.e., the proximal policy optimization (PPO). The numerical results illustrate the benefits of IRS-enabled UAV communication systems. By using IRSs and the PPO algorithm, UAVs can achieve better performance than other methods that consider a fixed IRS, random deployment, other RL methods(A2C), and the impact of UAV jitter.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNSM.2024.3364164</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-5364-8888</orcidid><orcidid>https://orcid.org/0000-0003-3910-9153</orcidid><orcidid>https://orcid.org/0000-0001-7893-8435</orcidid><orcidid>https://orcid.org/0000-0001-9364-315X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-4537 |
ispartof | IEEE eTransactions on network and service management, 2024-06, Vol.21 (3), p.3385-3400 |
issn | 1932-4537 1932-4537 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TNSM_2024_3364164 |
source | IEEE Electronic Library (IEL) |
subjects | age of information Algorithms Array signal processing Autonomous aerial vehicles Buildings Carrier mobility Communications systems Industrial applications Industrial Internet of Things intelligent reflecting surface Internet of Things Machine learning NOMA non-orthogonal multiple access Nonorthogonal multiple access Optimization Power proximal policy optimization Reconfigurable intelligent surfaces Resource management Trajectory trajectory design Unmanned aerial vehicles |
title | AI-Based Radio Resource Management and Trajectory Design for IRS-UAV-Assisted PD-NOMA Communication |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A15%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AI-Based%20Radio%20Resource%20Management%20and%20Trajectory%20Design%20for%20IRS-UAV-Assisted%20PD-NOMA%20Communication&rft.jtitle=IEEE%20eTransactions%20on%20network%20and%20service%20management&rft.au=Hariz,%20Hussein%20Muhi&rft.date=2024-06-01&rft.volume=21&rft.issue=3&rft.spage=3385&rft.epage=3400&rft.pages=3385-3400&rft.issn=1932-4537&rft.eissn=1932-4537&rft.coden=ITNSC4&rft_id=info:doi/10.1109/TNSM.2024.3364164&rft_dat=%3Cproquest_RIE%3E3081861956%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3081861956&rft_id=info:pmid/&rft_ieee_id=10430453&rfr_iscdi=true |