ALAP: Availability- and Latency-Aware Protection for O-RAN: A Deep Q-Learning Approach

Ultra-Reliable Low Latency Communications (URLLC) is a critical use case in 5G and B5G networks enabling applications such as Augmented Reality (AR)-assisted surgery, vehicle-to-everything communications, and smart grids to consistently deliver the promised Quality of Service to the end-users. The i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE eTransactions on network and service management 2024-04, Vol.21 (2), p.2253-2265
Hauptverfasser: Tamim, Ibrahim, Shami, Abdallah, Ong, Lyndon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2265
container_issue 2
container_start_page 2253
container_title IEEE eTransactions on network and service management
container_volume 21
creator Tamim, Ibrahim
Shami, Abdallah
Ong, Lyndon
description Ultra-Reliable Low Latency Communications (URLLC) is a critical use case in 5G and B5G networks enabling applications such as Augmented Reality (AR)-assisted surgery, vehicle-to-everything communications, and smart grids to consistently deliver the promised Quality of Service to the end-users. The intelligence of the 5G core has made such applications possible, and the O-Radio Access Network (O-RAN) has extended this intelligence to Radio Access Networks (RANs) through its openness, cloudification, and ability to host machine learning models at every layer. However, the cloudification of O-RAN introduces challenges, such as securing availability and ensuring latency for URLLC. In this work, we propose an Availability- and Latency-Aware O-RAN Virtual Network Function (VNF) Protection (ALAP) solution. ALAP offers a shared VNF protection scheme based on deep Q-learning, efficiently providing this protection while minimizing the number of VNF backup components compared to dedicated protection schemes. Our solution protects against resource blockages and alleviates operational costs for network service providers. In addition to these objectives, ALAP ensures that the network meets URLLC's strict availability and end-to-end latency constraints. ALAP has shown promising results in how quickly it can learn to optimize these objectives and in its capability to achieve its goals on large-scale O-RAN deployments.
doi_str_mv 10.1109/TNSM.2023.3339302
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNSM_2023_3339302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10342818</ieee_id><sourcerecordid>3040045723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-93469788bac373ff13a012264f001b3e7912c8f74beb319515afa71c03f0d4fe3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqXwAUgsLLF2sT1OE7OLylMKbYHC1nLcMaQqSeqkoP49qdpFVzOLe-6VDiGXgg-E4PpmNn5_GUguYQAAGrg8Ij2hQTIVQXx88J-Ss6ZZcB4lQsse-UyzdHpL019bLG1eLIt2w6gt5zSzLZZuw9I_G5BOQ9Wia4uqpL4KdMLe0nFH0TvEmr6yDG0oi_KLpnUdKuu-z8mJt8sGL_a3Tz4e7mejJ5ZNHp9HacacVMOWaVBDHSdJbh3E4L0Ay4WUQ-U5FzlgrIV0iY9VjjkIHYnIehsLx8HzufIIfXK96-1mV2tsWrOo1qHsJg1wxbmKYgldSuxSLlRNE9CbOhQ_NmyM4Garz2z1ma0-s9fXMVc7pkDEgzwomYgE_gFv_2jD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3040045723</pqid></control><display><type>article</type><title>ALAP: Availability- and Latency-Aware Protection for O-RAN: A Deep Q-Learning Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Tamim, Ibrahim ; Shami, Abdallah ; Ong, Lyndon</creator><creatorcontrib>Tamim, Ibrahim ; Shami, Abdallah ; Ong, Lyndon</creatorcontrib><description>Ultra-Reliable Low Latency Communications (URLLC) is a critical use case in 5G and B5G networks enabling applications such as Augmented Reality (AR)-assisted surgery, vehicle-to-everything communications, and smart grids to consistently deliver the promised Quality of Service to the end-users. The intelligence of the 5G core has made such applications possible, and the O-Radio Access Network (O-RAN) has extended this intelligence to Radio Access Networks (RANs) through its openness, cloudification, and ability to host machine learning models at every layer. However, the cloudification of O-RAN introduces challenges, such as securing availability and ensuring latency for URLLC. In this work, we propose an Availability- and Latency-Aware O-RAN Virtual Network Function (VNF) Protection (ALAP) solution. ALAP offers a shared VNF protection scheme based on deep Q-learning, efficiently providing this protection while minimizing the number of VNF backup components compared to dedicated protection schemes. Our solution protects against resource blockages and alleviates operational costs for network service providers. In addition to these objectives, ALAP ensures that the network meets URLLC's strict availability and end-to-end latency constraints. ALAP has shown promising results in how quickly it can learn to optimize these objectives and in its capability to achieve its goals on large-scale O-RAN deployments.</description><identifier>ISSN: 1932-4537</identifier><identifier>EISSN: 1932-4537</identifier><identifier>DOI: 10.1109/TNSM.2023.3339302</identifier><identifier>CODEN: ITNSC4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>5G mobile communication ; Augmented reality ; Availability ; Cloud computing ; Costs ; deep reinforcement learning ; Intelligence ; Internet of Things ; Machine learning ; Network latency ; O-RAN ; Q-learning ; Servers ; Smart grid ; Ultra reliable low latency communication ; URLLC ; Virtual networks ; VNF placement</subject><ispartof>IEEE eTransactions on network and service management, 2024-04, Vol.21 (2), p.2253-2265</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-93469788bac373ff13a012264f001b3e7912c8f74beb319515afa71c03f0d4fe3</cites><orcidid>0000-0002-2124-8828 ; 0000-0003-2887-0350 ; 0000-0001-7749-7543</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10342818$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10342818$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tamim, Ibrahim</creatorcontrib><creatorcontrib>Shami, Abdallah</creatorcontrib><creatorcontrib>Ong, Lyndon</creatorcontrib><title>ALAP: Availability- and Latency-Aware Protection for O-RAN: A Deep Q-Learning Approach</title><title>IEEE eTransactions on network and service management</title><addtitle>T-NSM</addtitle><description>Ultra-Reliable Low Latency Communications (URLLC) is a critical use case in 5G and B5G networks enabling applications such as Augmented Reality (AR)-assisted surgery, vehicle-to-everything communications, and smart grids to consistently deliver the promised Quality of Service to the end-users. The intelligence of the 5G core has made such applications possible, and the O-Radio Access Network (O-RAN) has extended this intelligence to Radio Access Networks (RANs) through its openness, cloudification, and ability to host machine learning models at every layer. However, the cloudification of O-RAN introduces challenges, such as securing availability and ensuring latency for URLLC. In this work, we propose an Availability- and Latency-Aware O-RAN Virtual Network Function (VNF) Protection (ALAP) solution. ALAP offers a shared VNF protection scheme based on deep Q-learning, efficiently providing this protection while minimizing the number of VNF backup components compared to dedicated protection schemes. Our solution protects against resource blockages and alleviates operational costs for network service providers. In addition to these objectives, ALAP ensures that the network meets URLLC's strict availability and end-to-end latency constraints. ALAP has shown promising results in how quickly it can learn to optimize these objectives and in its capability to achieve its goals on large-scale O-RAN deployments.</description><subject>5G mobile communication</subject><subject>Augmented reality</subject><subject>Availability</subject><subject>Cloud computing</subject><subject>Costs</subject><subject>deep reinforcement learning</subject><subject>Intelligence</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Network latency</subject><subject>O-RAN</subject><subject>Q-learning</subject><subject>Servers</subject><subject>Smart grid</subject><subject>Ultra reliable low latency communication</subject><subject>URLLC</subject><subject>Virtual networks</subject><subject>VNF placement</subject><issn>1932-4537</issn><issn>1932-4537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOwzAQRS0EEqXwAUgsLLF2sT1OE7OLylMKbYHC1nLcMaQqSeqkoP49qdpFVzOLe-6VDiGXgg-E4PpmNn5_GUguYQAAGrg8Ij2hQTIVQXx88J-Ss6ZZcB4lQsse-UyzdHpL019bLG1eLIt2w6gt5zSzLZZuw9I_G5BOQ9Wia4uqpL4KdMLe0nFH0TvEmr6yDG0oi_KLpnUdKuu-z8mJt8sGL_a3Tz4e7mejJ5ZNHp9HacacVMOWaVBDHSdJbh3E4L0Ay4WUQ-U5FzlgrIV0iY9VjjkIHYnIehsLx8HzufIIfXK96-1mV2tsWrOo1qHsJg1wxbmKYgldSuxSLlRNE9CbOhQ_NmyM4Garz2z1ma0-s9fXMVc7pkDEgzwomYgE_gFv_2jD</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Tamim, Ibrahim</creator><creator>Shami, Abdallah</creator><creator>Ong, Lyndon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2124-8828</orcidid><orcidid>https://orcid.org/0000-0003-2887-0350</orcidid><orcidid>https://orcid.org/0000-0001-7749-7543</orcidid></search><sort><creationdate>20240401</creationdate><title>ALAP: Availability- and Latency-Aware Protection for O-RAN: A Deep Q-Learning Approach</title><author>Tamim, Ibrahim ; Shami, Abdallah ; Ong, Lyndon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-93469788bac373ff13a012264f001b3e7912c8f74beb319515afa71c03f0d4fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>5G mobile communication</topic><topic>Augmented reality</topic><topic>Availability</topic><topic>Cloud computing</topic><topic>Costs</topic><topic>deep reinforcement learning</topic><topic>Intelligence</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Network latency</topic><topic>O-RAN</topic><topic>Q-learning</topic><topic>Servers</topic><topic>Smart grid</topic><topic>Ultra reliable low latency communication</topic><topic>URLLC</topic><topic>Virtual networks</topic><topic>VNF placement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tamim, Ibrahim</creatorcontrib><creatorcontrib>Shami, Abdallah</creatorcontrib><creatorcontrib>Ong, Lyndon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE eTransactions on network and service management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tamim, Ibrahim</au><au>Shami, Abdallah</au><au>Ong, Lyndon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ALAP: Availability- and Latency-Aware Protection for O-RAN: A Deep Q-Learning Approach</atitle><jtitle>IEEE eTransactions on network and service management</jtitle><stitle>T-NSM</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>21</volume><issue>2</issue><spage>2253</spage><epage>2265</epage><pages>2253-2265</pages><issn>1932-4537</issn><eissn>1932-4537</eissn><coden>ITNSC4</coden><abstract>Ultra-Reliable Low Latency Communications (URLLC) is a critical use case in 5G and B5G networks enabling applications such as Augmented Reality (AR)-assisted surgery, vehicle-to-everything communications, and smart grids to consistently deliver the promised Quality of Service to the end-users. The intelligence of the 5G core has made such applications possible, and the O-Radio Access Network (O-RAN) has extended this intelligence to Radio Access Networks (RANs) through its openness, cloudification, and ability to host machine learning models at every layer. However, the cloudification of O-RAN introduces challenges, such as securing availability and ensuring latency for URLLC. In this work, we propose an Availability- and Latency-Aware O-RAN Virtual Network Function (VNF) Protection (ALAP) solution. ALAP offers a shared VNF protection scheme based on deep Q-learning, efficiently providing this protection while minimizing the number of VNF backup components compared to dedicated protection schemes. Our solution protects against resource blockages and alleviates operational costs for network service providers. In addition to these objectives, ALAP ensures that the network meets URLLC's strict availability and end-to-end latency constraints. ALAP has shown promising results in how quickly it can learn to optimize these objectives and in its capability to achieve its goals on large-scale O-RAN deployments.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNSM.2023.3339302</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2124-8828</orcidid><orcidid>https://orcid.org/0000-0003-2887-0350</orcidid><orcidid>https://orcid.org/0000-0001-7749-7543</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4537
ispartof IEEE eTransactions on network and service management, 2024-04, Vol.21 (2), p.2253-2265
issn 1932-4537
1932-4537
language eng
recordid cdi_crossref_primary_10_1109_TNSM_2023_3339302
source IEEE Electronic Library (IEL)
subjects 5G mobile communication
Augmented reality
Availability
Cloud computing
Costs
deep reinforcement learning
Intelligence
Internet of Things
Machine learning
Network latency
O-RAN
Q-learning
Servers
Smart grid
Ultra reliable low latency communication
URLLC
Virtual networks
VNF placement
title ALAP: Availability- and Latency-Aware Protection for O-RAN: A Deep Q-Learning Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T22%3A28%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ALAP:%20Availability-%20and%20Latency-Aware%20Protection%20for%20O-RAN:%20A%20Deep%20Q-Learning%20Approach&rft.jtitle=IEEE%20eTransactions%20on%20network%20and%20service%20management&rft.au=Tamim,%20Ibrahim&rft.date=2024-04-01&rft.volume=21&rft.issue=2&rft.spage=2253&rft.epage=2265&rft.pages=2253-2265&rft.issn=1932-4537&rft.eissn=1932-4537&rft.coden=ITNSC4&rft_id=info:doi/10.1109/TNSM.2023.3339302&rft_dat=%3Cproquest_RIE%3E3040045723%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3040045723&rft_id=info:pmid/&rft_ieee_id=10342818&rfr_iscdi=true