ALAP: Availability- and Latency-Aware Protection for O-RAN: A Deep Q-Learning Approach
Ultra-Reliable Low Latency Communications (URLLC) is a critical use case in 5G and B5G networks enabling applications such as Augmented Reality (AR)-assisted surgery, vehicle-to-everything communications, and smart grids to consistently deliver the promised Quality of Service to the end-users. The i...
Gespeichert in:
Veröffentlicht in: | IEEE eTransactions on network and service management 2024-04, Vol.21 (2), p.2253-2265 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2265 |
---|---|
container_issue | 2 |
container_start_page | 2253 |
container_title | IEEE eTransactions on network and service management |
container_volume | 21 |
creator | Tamim, Ibrahim Shami, Abdallah Ong, Lyndon |
description | Ultra-Reliable Low Latency Communications (URLLC) is a critical use case in 5G and B5G networks enabling applications such as Augmented Reality (AR)-assisted surgery, vehicle-to-everything communications, and smart grids to consistently deliver the promised Quality of Service to the end-users. The intelligence of the 5G core has made such applications possible, and the O-Radio Access Network (O-RAN) has extended this intelligence to Radio Access Networks (RANs) through its openness, cloudification, and ability to host machine learning models at every layer. However, the cloudification of O-RAN introduces challenges, such as securing availability and ensuring latency for URLLC. In this work, we propose an Availability- and Latency-Aware O-RAN Virtual Network Function (VNF) Protection (ALAP) solution. ALAP offers a shared VNF protection scheme based on deep Q-learning, efficiently providing this protection while minimizing the number of VNF backup components compared to dedicated protection schemes. Our solution protects against resource blockages and alleviates operational costs for network service providers. In addition to these objectives, ALAP ensures that the network meets URLLC's strict availability and end-to-end latency constraints. ALAP has shown promising results in how quickly it can learn to optimize these objectives and in its capability to achieve its goals on large-scale O-RAN deployments. |
doi_str_mv | 10.1109/TNSM.2023.3339302 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNSM_2023_3339302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10342818</ieee_id><sourcerecordid>3040045723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-93469788bac373ff13a012264f001b3e7912c8f74beb319515afa71c03f0d4fe3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqXwAUgsLLF2sT1OE7OLylMKbYHC1nLcMaQqSeqkoP49qdpFVzOLe-6VDiGXgg-E4PpmNn5_GUguYQAAGrg8Ij2hQTIVQXx88J-Ss6ZZcB4lQsse-UyzdHpL019bLG1eLIt2w6gt5zSzLZZuw9I_G5BOQ9Wia4uqpL4KdMLe0nFH0TvEmr6yDG0oi_KLpnUdKuu-z8mJt8sGL_a3Tz4e7mejJ5ZNHp9HacacVMOWaVBDHSdJbh3E4L0Ay4WUQ-U5FzlgrIV0iY9VjjkIHYnIehsLx8HzufIIfXK96-1mV2tsWrOo1qHsJg1wxbmKYgldSuxSLlRNE9CbOhQ_NmyM4Garz2z1ma0-s9fXMVc7pkDEgzwomYgE_gFv_2jD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3040045723</pqid></control><display><type>article</type><title>ALAP: Availability- and Latency-Aware Protection for O-RAN: A Deep Q-Learning Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Tamim, Ibrahim ; Shami, Abdallah ; Ong, Lyndon</creator><creatorcontrib>Tamim, Ibrahim ; Shami, Abdallah ; Ong, Lyndon</creatorcontrib><description>Ultra-Reliable Low Latency Communications (URLLC) is a critical use case in 5G and B5G networks enabling applications such as Augmented Reality (AR)-assisted surgery, vehicle-to-everything communications, and smart grids to consistently deliver the promised Quality of Service to the end-users. The intelligence of the 5G core has made such applications possible, and the O-Radio Access Network (O-RAN) has extended this intelligence to Radio Access Networks (RANs) through its openness, cloudification, and ability to host machine learning models at every layer. However, the cloudification of O-RAN introduces challenges, such as securing availability and ensuring latency for URLLC. In this work, we propose an Availability- and Latency-Aware O-RAN Virtual Network Function (VNF) Protection (ALAP) solution. ALAP offers a shared VNF protection scheme based on deep Q-learning, efficiently providing this protection while minimizing the number of VNF backup components compared to dedicated protection schemes. Our solution protects against resource blockages and alleviates operational costs for network service providers. In addition to these objectives, ALAP ensures that the network meets URLLC's strict availability and end-to-end latency constraints. ALAP has shown promising results in how quickly it can learn to optimize these objectives and in its capability to achieve its goals on large-scale O-RAN deployments.</description><identifier>ISSN: 1932-4537</identifier><identifier>EISSN: 1932-4537</identifier><identifier>DOI: 10.1109/TNSM.2023.3339302</identifier><identifier>CODEN: ITNSC4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>5G mobile communication ; Augmented reality ; Availability ; Cloud computing ; Costs ; deep reinforcement learning ; Intelligence ; Internet of Things ; Machine learning ; Network latency ; O-RAN ; Q-learning ; Servers ; Smart grid ; Ultra reliable low latency communication ; URLLC ; Virtual networks ; VNF placement</subject><ispartof>IEEE eTransactions on network and service management, 2024-04, Vol.21 (2), p.2253-2265</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-93469788bac373ff13a012264f001b3e7912c8f74beb319515afa71c03f0d4fe3</cites><orcidid>0000-0002-2124-8828 ; 0000-0003-2887-0350 ; 0000-0001-7749-7543</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10342818$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10342818$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tamim, Ibrahim</creatorcontrib><creatorcontrib>Shami, Abdallah</creatorcontrib><creatorcontrib>Ong, Lyndon</creatorcontrib><title>ALAP: Availability- and Latency-Aware Protection for O-RAN: A Deep Q-Learning Approach</title><title>IEEE eTransactions on network and service management</title><addtitle>T-NSM</addtitle><description>Ultra-Reliable Low Latency Communications (URLLC) is a critical use case in 5G and B5G networks enabling applications such as Augmented Reality (AR)-assisted surgery, vehicle-to-everything communications, and smart grids to consistently deliver the promised Quality of Service to the end-users. The intelligence of the 5G core has made such applications possible, and the O-Radio Access Network (O-RAN) has extended this intelligence to Radio Access Networks (RANs) through its openness, cloudification, and ability to host machine learning models at every layer. However, the cloudification of O-RAN introduces challenges, such as securing availability and ensuring latency for URLLC. In this work, we propose an Availability- and Latency-Aware O-RAN Virtual Network Function (VNF) Protection (ALAP) solution. ALAP offers a shared VNF protection scheme based on deep Q-learning, efficiently providing this protection while minimizing the number of VNF backup components compared to dedicated protection schemes. Our solution protects against resource blockages and alleviates operational costs for network service providers. In addition to these objectives, ALAP ensures that the network meets URLLC's strict availability and end-to-end latency constraints. ALAP has shown promising results in how quickly it can learn to optimize these objectives and in its capability to achieve its goals on large-scale O-RAN deployments.</description><subject>5G mobile communication</subject><subject>Augmented reality</subject><subject>Availability</subject><subject>Cloud computing</subject><subject>Costs</subject><subject>deep reinforcement learning</subject><subject>Intelligence</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Network latency</subject><subject>O-RAN</subject><subject>Q-learning</subject><subject>Servers</subject><subject>Smart grid</subject><subject>Ultra reliable low latency communication</subject><subject>URLLC</subject><subject>Virtual networks</subject><subject>VNF placement</subject><issn>1932-4537</issn><issn>1932-4537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOwzAQRS0EEqXwAUgsLLF2sT1OE7OLylMKbYHC1nLcMaQqSeqkoP49qdpFVzOLe-6VDiGXgg-E4PpmNn5_GUguYQAAGrg8Ij2hQTIVQXx88J-Ss6ZZcB4lQsse-UyzdHpL019bLG1eLIt2w6gt5zSzLZZuw9I_G5BOQ9Wia4uqpL4KdMLe0nFH0TvEmr6yDG0oi_KLpnUdKuu-z8mJt8sGL_a3Tz4e7mejJ5ZNHp9HacacVMOWaVBDHSdJbh3E4L0Ay4WUQ-U5FzlgrIV0iY9VjjkIHYnIehsLx8HzufIIfXK96-1mV2tsWrOo1qHsJg1wxbmKYgldSuxSLlRNE9CbOhQ_NmyM4Garz2z1ma0-s9fXMVc7pkDEgzwomYgE_gFv_2jD</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Tamim, Ibrahim</creator><creator>Shami, Abdallah</creator><creator>Ong, Lyndon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2124-8828</orcidid><orcidid>https://orcid.org/0000-0003-2887-0350</orcidid><orcidid>https://orcid.org/0000-0001-7749-7543</orcidid></search><sort><creationdate>20240401</creationdate><title>ALAP: Availability- and Latency-Aware Protection for O-RAN: A Deep Q-Learning Approach</title><author>Tamim, Ibrahim ; Shami, Abdallah ; Ong, Lyndon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-93469788bac373ff13a012264f001b3e7912c8f74beb319515afa71c03f0d4fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>5G mobile communication</topic><topic>Augmented reality</topic><topic>Availability</topic><topic>Cloud computing</topic><topic>Costs</topic><topic>deep reinforcement learning</topic><topic>Intelligence</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Network latency</topic><topic>O-RAN</topic><topic>Q-learning</topic><topic>Servers</topic><topic>Smart grid</topic><topic>Ultra reliable low latency communication</topic><topic>URLLC</topic><topic>Virtual networks</topic><topic>VNF placement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tamim, Ibrahim</creatorcontrib><creatorcontrib>Shami, Abdallah</creatorcontrib><creatorcontrib>Ong, Lyndon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE eTransactions on network and service management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tamim, Ibrahim</au><au>Shami, Abdallah</au><au>Ong, Lyndon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ALAP: Availability- and Latency-Aware Protection for O-RAN: A Deep Q-Learning Approach</atitle><jtitle>IEEE eTransactions on network and service management</jtitle><stitle>T-NSM</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>21</volume><issue>2</issue><spage>2253</spage><epage>2265</epage><pages>2253-2265</pages><issn>1932-4537</issn><eissn>1932-4537</eissn><coden>ITNSC4</coden><abstract>Ultra-Reliable Low Latency Communications (URLLC) is a critical use case in 5G and B5G networks enabling applications such as Augmented Reality (AR)-assisted surgery, vehicle-to-everything communications, and smart grids to consistently deliver the promised Quality of Service to the end-users. The intelligence of the 5G core has made such applications possible, and the O-Radio Access Network (O-RAN) has extended this intelligence to Radio Access Networks (RANs) through its openness, cloudification, and ability to host machine learning models at every layer. However, the cloudification of O-RAN introduces challenges, such as securing availability and ensuring latency for URLLC. In this work, we propose an Availability- and Latency-Aware O-RAN Virtual Network Function (VNF) Protection (ALAP) solution. ALAP offers a shared VNF protection scheme based on deep Q-learning, efficiently providing this protection while minimizing the number of VNF backup components compared to dedicated protection schemes. Our solution protects against resource blockages and alleviates operational costs for network service providers. In addition to these objectives, ALAP ensures that the network meets URLLC's strict availability and end-to-end latency constraints. ALAP has shown promising results in how quickly it can learn to optimize these objectives and in its capability to achieve its goals on large-scale O-RAN deployments.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNSM.2023.3339302</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2124-8828</orcidid><orcidid>https://orcid.org/0000-0003-2887-0350</orcidid><orcidid>https://orcid.org/0000-0001-7749-7543</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-4537 |
ispartof | IEEE eTransactions on network and service management, 2024-04, Vol.21 (2), p.2253-2265 |
issn | 1932-4537 1932-4537 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TNSM_2023_3339302 |
source | IEEE Electronic Library (IEL) |
subjects | 5G mobile communication Augmented reality Availability Cloud computing Costs deep reinforcement learning Intelligence Internet of Things Machine learning Network latency O-RAN Q-learning Servers Smart grid Ultra reliable low latency communication URLLC Virtual networks VNF placement |
title | ALAP: Availability- and Latency-Aware Protection for O-RAN: A Deep Q-Learning Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T22%3A28%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ALAP:%20Availability-%20and%20Latency-Aware%20Protection%20for%20O-RAN:%20A%20Deep%20Q-Learning%20Approach&rft.jtitle=IEEE%20eTransactions%20on%20network%20and%20service%20management&rft.au=Tamim,%20Ibrahim&rft.date=2024-04-01&rft.volume=21&rft.issue=2&rft.spage=2253&rft.epage=2265&rft.pages=2253-2265&rft.issn=1932-4537&rft.eissn=1932-4537&rft.coden=ITNSC4&rft_id=info:doi/10.1109/TNSM.2023.3339302&rft_dat=%3Cproquest_RIE%3E3040045723%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3040045723&rft_id=info:pmid/&rft_ieee_id=10342818&rfr_iscdi=true |