A Novel Framework of Federated and Distributed Machine Learning for Resource Provisioning in 5G and Beyond Using Mobile-Edge SCBS

The future needs of the telecommunication system lie in deploying a heterogeneous ultra-dense network with varied topographical use cases. However, this increase in ultra-denseness in 5g and beyond poses several challenges in resource allocation, requiring an accurate learning-based prediction. This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE eTransactions on network and service management 2023-06, Vol.20 (2), p.985-994
Hauptverfasser: Gorla, Praveen, Keerthivasan, V., Chamola, Vinay, Guizani, Mohsen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 994
container_issue 2
container_start_page 985
container_title IEEE eTransactions on network and service management
container_volume 20
creator Gorla, Praveen
Keerthivasan, V.
Chamola, Vinay
Guizani, Mohsen
description The future needs of the telecommunication system lie in deploying a heterogeneous ultra-dense network with varied topographical use cases. However, this increase in ultra-denseness in 5g and beyond poses several challenges in resource allocation, requiring an accurate learning-based prediction. This paper proposes a novel framework using Federated Learning (FL) and Distributed Machine Learning (DML) for Mobile Edge based resource provisioning to User Equipment (UEs). This work formulates the correlation-based novel procedures between UEs in applying Federated and Distributed Machine Learning through Kolmogorov tests for predicting SNR. The correlations of the distribution obtained through the Kolmogorov test check the extent of Independent and Identically Distributed (IID) - ness between modelled data and evaluate the global model for resource provisioning accuracy. Further, correlation-based DML is also employed to balance the computational load of a mobile edge, which acts as a small cell base station and a computational node. In this approach, we account for correlation-based resource predictive model training to balance the uniform computational load by data distribution methods among the neighbouring mobile Edge SCBS nodes for computation. Together with both DML and FL, we create a novel Framework for resource prediction with minimal time for achieving high accuracy without over-fitting.
doi_str_mv 10.1109/TNSM.2022.3208522
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNSM_2022_3208522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9896994</ieee_id><sourcerecordid>2831522083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-30d61a73dc4f7893118ae9b1353f89575a29d0a0f690a306c2ca98d48550c8523</originalsourceid><addsrcrecordid>eNpNkE1PAjEQhjdGExH9AcZLE8-L_dgu7REQ0ATUCJybsp3FImyxXTAc_efuAjGe5uuddyZPFN0S3CIEy4fpy2TcopjSFqNYcErPogaRjMYJZ-3zf_lldBXCEmMuiKSN6KeDXtwOVmjg9Rq-nf9ELkcDMOB1CQbpwqBHG0pv59u6HuvswxaARqB9YYsFyp1H7xDc1meA3rzb2WDdYWILxIcHgy7sXRVmoW6P3dyuIO6bBaBJrzu5ji5yvQpwc4rNaDboT3tP8eh1-NzrjOKMSlbGDJuU6DYzWZK3hWSECA1yThhnuZC8zTWVBmucpxJrhtOMZloKkwjOcVYBYc3o_ui78e5rC6FUy-rpojqpqGCkQoYFq1TkqMq8C8FDrjberrXfK4JVTVrVpFVNWp1IVzt3xx0LAH96KWQqZcJ-AVSgeMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831522083</pqid></control><display><type>article</type><title>A Novel Framework of Federated and Distributed Machine Learning for Resource Provisioning in 5G and Beyond Using Mobile-Edge SCBS</title><source>IEEE Electronic Library (IEL)</source><creator>Gorla, Praveen ; Keerthivasan, V. ; Chamola, Vinay ; Guizani, Mohsen</creator><creatorcontrib>Gorla, Praveen ; Keerthivasan, V. ; Chamola, Vinay ; Guizani, Mohsen</creatorcontrib><description>The future needs of the telecommunication system lie in deploying a heterogeneous ultra-dense network with varied topographical use cases. However, this increase in ultra-denseness in 5g and beyond poses several challenges in resource allocation, requiring an accurate learning-based prediction. This paper proposes a novel framework using Federated Learning (FL) and Distributed Machine Learning (DML) for Mobile Edge based resource provisioning to User Equipment (UEs). This work formulates the correlation-based novel procedures between UEs in applying Federated and Distributed Machine Learning through Kolmogorov tests for predicting SNR. The correlations of the distribution obtained through the Kolmogorov test check the extent of Independent and Identically Distributed (IID) - ness between modelled data and evaluate the global model for resource provisioning accuracy. Further, correlation-based DML is also employed to balance the computational load of a mobile edge, which acts as a small cell base station and a computational node. In this approach, we account for correlation-based resource predictive model training to balance the uniform computational load by data distribution methods among the neighbouring mobile Edge SCBS nodes for computation. Together with both DML and FL, we create a novel Framework for resource prediction with minimal time for achieving high accuracy without over-fitting.</description><identifier>ISSN: 1932-4537</identifier><identifier>EISSN: 1932-4537</identifier><identifier>DOI: 10.1109/TNSM.2022.3208522</identifier><identifier>CODEN: ITNSC4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>5G and mobile edge nodes ; 5G mobile communication ; Accuracy ; Base stations ; Computational modeling ; Correlation ; Electric communication systems ; Federated learning ; Machine learning ; Prediction models ; Predictive models ; Provisioning ; Radio equipment ; Resource allocation ; resource management ; Signal to noise ratio</subject><ispartof>IEEE eTransactions on network and service management, 2023-06, Vol.20 (2), p.985-994</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-30d61a73dc4f7893118ae9b1353f89575a29d0a0f690a306c2ca98d48550c8523</citedby><cites>FETCH-LOGICAL-c293t-30d61a73dc4f7893118ae9b1353f89575a29d0a0f690a306c2ca98d48550c8523</cites><orcidid>0000-0002-8972-8094 ; 0000-0002-6730-3060 ; 0000-0002-7972-4401 ; 0000-0002-4298-922X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9896994$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9896994$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gorla, Praveen</creatorcontrib><creatorcontrib>Keerthivasan, V.</creatorcontrib><creatorcontrib>Chamola, Vinay</creatorcontrib><creatorcontrib>Guizani, Mohsen</creatorcontrib><title>A Novel Framework of Federated and Distributed Machine Learning for Resource Provisioning in 5G and Beyond Using Mobile-Edge SCBS</title><title>IEEE eTransactions on network and service management</title><addtitle>T-NSM</addtitle><description>The future needs of the telecommunication system lie in deploying a heterogeneous ultra-dense network with varied topographical use cases. However, this increase in ultra-denseness in 5g and beyond poses several challenges in resource allocation, requiring an accurate learning-based prediction. This paper proposes a novel framework using Federated Learning (FL) and Distributed Machine Learning (DML) for Mobile Edge based resource provisioning to User Equipment (UEs). This work formulates the correlation-based novel procedures between UEs in applying Federated and Distributed Machine Learning through Kolmogorov tests for predicting SNR. The correlations of the distribution obtained through the Kolmogorov test check the extent of Independent and Identically Distributed (IID) - ness between modelled data and evaluate the global model for resource provisioning accuracy. Further, correlation-based DML is also employed to balance the computational load of a mobile edge, which acts as a small cell base station and a computational node. In this approach, we account for correlation-based resource predictive model training to balance the uniform computational load by data distribution methods among the neighbouring mobile Edge SCBS nodes for computation. Together with both DML and FL, we create a novel Framework for resource prediction with minimal time for achieving high accuracy without over-fitting.</description><subject>5G and mobile edge nodes</subject><subject>5G mobile communication</subject><subject>Accuracy</subject><subject>Base stations</subject><subject>Computational modeling</subject><subject>Correlation</subject><subject>Electric communication systems</subject><subject>Federated learning</subject><subject>Machine learning</subject><subject>Prediction models</subject><subject>Predictive models</subject><subject>Provisioning</subject><subject>Radio equipment</subject><subject>Resource allocation</subject><subject>resource management</subject><subject>Signal to noise ratio</subject><issn>1932-4537</issn><issn>1932-4537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PAjEQhjdGExH9AcZLE8-L_dgu7REQ0ATUCJybsp3FImyxXTAc_efuAjGe5uuddyZPFN0S3CIEy4fpy2TcopjSFqNYcErPogaRjMYJZ-3zf_lldBXCEmMuiKSN6KeDXtwOVmjg9Rq-nf9ELkcDMOB1CQbpwqBHG0pv59u6HuvswxaARqB9YYsFyp1H7xDc1meA3rzb2WDdYWILxIcHgy7sXRVmoW6P3dyuIO6bBaBJrzu5ji5yvQpwc4rNaDboT3tP8eh1-NzrjOKMSlbGDJuU6DYzWZK3hWSECA1yThhnuZC8zTWVBmucpxJrhtOMZloKkwjOcVYBYc3o_ui78e5rC6FUy-rpojqpqGCkQoYFq1TkqMq8C8FDrjberrXfK4JVTVrVpFVNWp1IVzt3xx0LAH96KWQqZcJ-AVSgeMw</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Gorla, Praveen</creator><creator>Keerthivasan, V.</creator><creator>Chamola, Vinay</creator><creator>Guizani, Mohsen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8972-8094</orcidid><orcidid>https://orcid.org/0000-0002-6730-3060</orcidid><orcidid>https://orcid.org/0000-0002-7972-4401</orcidid><orcidid>https://orcid.org/0000-0002-4298-922X</orcidid></search><sort><creationdate>202306</creationdate><title>A Novel Framework of Federated and Distributed Machine Learning for Resource Provisioning in 5G and Beyond Using Mobile-Edge SCBS</title><author>Gorla, Praveen ; Keerthivasan, V. ; Chamola, Vinay ; Guizani, Mohsen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-30d61a73dc4f7893118ae9b1353f89575a29d0a0f690a306c2ca98d48550c8523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>5G and mobile edge nodes</topic><topic>5G mobile communication</topic><topic>Accuracy</topic><topic>Base stations</topic><topic>Computational modeling</topic><topic>Correlation</topic><topic>Electric communication systems</topic><topic>Federated learning</topic><topic>Machine learning</topic><topic>Prediction models</topic><topic>Predictive models</topic><topic>Provisioning</topic><topic>Radio equipment</topic><topic>Resource allocation</topic><topic>resource management</topic><topic>Signal to noise ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorla, Praveen</creatorcontrib><creatorcontrib>Keerthivasan, V.</creatorcontrib><creatorcontrib>Chamola, Vinay</creatorcontrib><creatorcontrib>Guizani, Mohsen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE eTransactions on network and service management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gorla, Praveen</au><au>Keerthivasan, V.</au><au>Chamola, Vinay</au><au>Guizani, Mohsen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Framework of Federated and Distributed Machine Learning for Resource Provisioning in 5G and Beyond Using Mobile-Edge SCBS</atitle><jtitle>IEEE eTransactions on network and service management</jtitle><stitle>T-NSM</stitle><date>2023-06</date><risdate>2023</risdate><volume>20</volume><issue>2</issue><spage>985</spage><epage>994</epage><pages>985-994</pages><issn>1932-4537</issn><eissn>1932-4537</eissn><coden>ITNSC4</coden><abstract>The future needs of the telecommunication system lie in deploying a heterogeneous ultra-dense network with varied topographical use cases. However, this increase in ultra-denseness in 5g and beyond poses several challenges in resource allocation, requiring an accurate learning-based prediction. This paper proposes a novel framework using Federated Learning (FL) and Distributed Machine Learning (DML) for Mobile Edge based resource provisioning to User Equipment (UEs). This work formulates the correlation-based novel procedures between UEs in applying Federated and Distributed Machine Learning through Kolmogorov tests for predicting SNR. The correlations of the distribution obtained through the Kolmogorov test check the extent of Independent and Identically Distributed (IID) - ness between modelled data and evaluate the global model for resource provisioning accuracy. Further, correlation-based DML is also employed to balance the computational load of a mobile edge, which acts as a small cell base station and a computational node. In this approach, we account for correlation-based resource predictive model training to balance the uniform computational load by data distribution methods among the neighbouring mobile Edge SCBS nodes for computation. Together with both DML and FL, we create a novel Framework for resource prediction with minimal time for achieving high accuracy without over-fitting.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNSM.2022.3208522</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8972-8094</orcidid><orcidid>https://orcid.org/0000-0002-6730-3060</orcidid><orcidid>https://orcid.org/0000-0002-7972-4401</orcidid><orcidid>https://orcid.org/0000-0002-4298-922X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4537
ispartof IEEE eTransactions on network and service management, 2023-06, Vol.20 (2), p.985-994
issn 1932-4537
1932-4537
language eng
recordid cdi_crossref_primary_10_1109_TNSM_2022_3208522
source IEEE Electronic Library (IEL)
subjects 5G and mobile edge nodes
5G mobile communication
Accuracy
Base stations
Computational modeling
Correlation
Electric communication systems
Federated learning
Machine learning
Prediction models
Predictive models
Provisioning
Radio equipment
Resource allocation
resource management
Signal to noise ratio
title A Novel Framework of Federated and Distributed Machine Learning for Resource Provisioning in 5G and Beyond Using Mobile-Edge SCBS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A32%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Framework%20of%20Federated%20and%20Distributed%20Machine%20Learning%20for%20Resource%20Provisioning%20in%205G%20and%20Beyond%20Using%20Mobile-Edge%20SCBS&rft.jtitle=IEEE%20eTransactions%20on%20network%20and%20service%20management&rft.au=Gorla,%20Praveen&rft.date=2023-06&rft.volume=20&rft.issue=2&rft.spage=985&rft.epage=994&rft.pages=985-994&rft.issn=1932-4537&rft.eissn=1932-4537&rft.coden=ITNSC4&rft_id=info:doi/10.1109/TNSM.2022.3208522&rft_dat=%3Cproquest_RIE%3E2831522083%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2831522083&rft_id=info:pmid/&rft_ieee_id=9896994&rfr_iscdi=true