A Novel Framework of Federated and Distributed Machine Learning for Resource Provisioning in 5G and Beyond Using Mobile-Edge SCBS
The future needs of the telecommunication system lie in deploying a heterogeneous ultra-dense network with varied topographical use cases. However, this increase in ultra-denseness in 5g and beyond poses several challenges in resource allocation, requiring an accurate learning-based prediction. This...
Gespeichert in:
Veröffentlicht in: | IEEE eTransactions on network and service management 2023-06, Vol.20 (2), p.985-994 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 994 |
---|---|
container_issue | 2 |
container_start_page | 985 |
container_title | IEEE eTransactions on network and service management |
container_volume | 20 |
creator | Gorla, Praveen Keerthivasan, V. Chamola, Vinay Guizani, Mohsen |
description | The future needs of the telecommunication system lie in deploying a heterogeneous ultra-dense network with varied topographical use cases. However, this increase in ultra-denseness in 5g and beyond poses several challenges in resource allocation, requiring an accurate learning-based prediction. This paper proposes a novel framework using Federated Learning (FL) and Distributed Machine Learning (DML) for Mobile Edge based resource provisioning to User Equipment (UEs). This work formulates the correlation-based novel procedures between UEs in applying Federated and Distributed Machine Learning through Kolmogorov tests for predicting SNR. The correlations of the distribution obtained through the Kolmogorov test check the extent of Independent and Identically Distributed (IID) - ness between modelled data and evaluate the global model for resource provisioning accuracy. Further, correlation-based DML is also employed to balance the computational load of a mobile edge, which acts as a small cell base station and a computational node. In this approach, we account for correlation-based resource predictive model training to balance the uniform computational load by data distribution methods among the neighbouring mobile Edge SCBS nodes for computation. Together with both DML and FL, we create a novel Framework for resource prediction with minimal time for achieving high accuracy without over-fitting. |
doi_str_mv | 10.1109/TNSM.2022.3208522 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNSM_2022_3208522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9896994</ieee_id><sourcerecordid>2831522083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-30d61a73dc4f7893118ae9b1353f89575a29d0a0f690a306c2ca98d48550c8523</originalsourceid><addsrcrecordid>eNpNkE1PAjEQhjdGExH9AcZLE8-L_dgu7REQ0ATUCJybsp3FImyxXTAc_efuAjGe5uuddyZPFN0S3CIEy4fpy2TcopjSFqNYcErPogaRjMYJZ-3zf_lldBXCEmMuiKSN6KeDXtwOVmjg9Rq-nf9ELkcDMOB1CQbpwqBHG0pv59u6HuvswxaARqB9YYsFyp1H7xDc1meA3rzb2WDdYWILxIcHgy7sXRVmoW6P3dyuIO6bBaBJrzu5ji5yvQpwc4rNaDboT3tP8eh1-NzrjOKMSlbGDJuU6DYzWZK3hWSECA1yThhnuZC8zTWVBmucpxJrhtOMZloKkwjOcVYBYc3o_ui78e5rC6FUy-rpojqpqGCkQoYFq1TkqMq8C8FDrjberrXfK4JVTVrVpFVNWp1IVzt3xx0LAH96KWQqZcJ-AVSgeMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831522083</pqid></control><display><type>article</type><title>A Novel Framework of Federated and Distributed Machine Learning for Resource Provisioning in 5G and Beyond Using Mobile-Edge SCBS</title><source>IEEE Electronic Library (IEL)</source><creator>Gorla, Praveen ; Keerthivasan, V. ; Chamola, Vinay ; Guizani, Mohsen</creator><creatorcontrib>Gorla, Praveen ; Keerthivasan, V. ; Chamola, Vinay ; Guizani, Mohsen</creatorcontrib><description>The future needs of the telecommunication system lie in deploying a heterogeneous ultra-dense network with varied topographical use cases. However, this increase in ultra-denseness in 5g and beyond poses several challenges in resource allocation, requiring an accurate learning-based prediction. This paper proposes a novel framework using Federated Learning (FL) and Distributed Machine Learning (DML) for Mobile Edge based resource provisioning to User Equipment (UEs). This work formulates the correlation-based novel procedures between UEs in applying Federated and Distributed Machine Learning through Kolmogorov tests for predicting SNR. The correlations of the distribution obtained through the Kolmogorov test check the extent of Independent and Identically Distributed (IID) - ness between modelled data and evaluate the global model for resource provisioning accuracy. Further, correlation-based DML is also employed to balance the computational load of a mobile edge, which acts as a small cell base station and a computational node. In this approach, we account for correlation-based resource predictive model training to balance the uniform computational load by data distribution methods among the neighbouring mobile Edge SCBS nodes for computation. Together with both DML and FL, we create a novel Framework for resource prediction with minimal time for achieving high accuracy without over-fitting.</description><identifier>ISSN: 1932-4537</identifier><identifier>EISSN: 1932-4537</identifier><identifier>DOI: 10.1109/TNSM.2022.3208522</identifier><identifier>CODEN: ITNSC4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>5G and mobile edge nodes ; 5G mobile communication ; Accuracy ; Base stations ; Computational modeling ; Correlation ; Electric communication systems ; Federated learning ; Machine learning ; Prediction models ; Predictive models ; Provisioning ; Radio equipment ; Resource allocation ; resource management ; Signal to noise ratio</subject><ispartof>IEEE eTransactions on network and service management, 2023-06, Vol.20 (2), p.985-994</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-30d61a73dc4f7893118ae9b1353f89575a29d0a0f690a306c2ca98d48550c8523</citedby><cites>FETCH-LOGICAL-c293t-30d61a73dc4f7893118ae9b1353f89575a29d0a0f690a306c2ca98d48550c8523</cites><orcidid>0000-0002-8972-8094 ; 0000-0002-6730-3060 ; 0000-0002-7972-4401 ; 0000-0002-4298-922X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9896994$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9896994$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gorla, Praveen</creatorcontrib><creatorcontrib>Keerthivasan, V.</creatorcontrib><creatorcontrib>Chamola, Vinay</creatorcontrib><creatorcontrib>Guizani, Mohsen</creatorcontrib><title>A Novel Framework of Federated and Distributed Machine Learning for Resource Provisioning in 5G and Beyond Using Mobile-Edge SCBS</title><title>IEEE eTransactions on network and service management</title><addtitle>T-NSM</addtitle><description>The future needs of the telecommunication system lie in deploying a heterogeneous ultra-dense network with varied topographical use cases. However, this increase in ultra-denseness in 5g and beyond poses several challenges in resource allocation, requiring an accurate learning-based prediction. This paper proposes a novel framework using Federated Learning (FL) and Distributed Machine Learning (DML) for Mobile Edge based resource provisioning to User Equipment (UEs). This work formulates the correlation-based novel procedures between UEs in applying Federated and Distributed Machine Learning through Kolmogorov tests for predicting SNR. The correlations of the distribution obtained through the Kolmogorov test check the extent of Independent and Identically Distributed (IID) - ness between modelled data and evaluate the global model for resource provisioning accuracy. Further, correlation-based DML is also employed to balance the computational load of a mobile edge, which acts as a small cell base station and a computational node. In this approach, we account for correlation-based resource predictive model training to balance the uniform computational load by data distribution methods among the neighbouring mobile Edge SCBS nodes for computation. Together with both DML and FL, we create a novel Framework for resource prediction with minimal time for achieving high accuracy without over-fitting.</description><subject>5G and mobile edge nodes</subject><subject>5G mobile communication</subject><subject>Accuracy</subject><subject>Base stations</subject><subject>Computational modeling</subject><subject>Correlation</subject><subject>Electric communication systems</subject><subject>Federated learning</subject><subject>Machine learning</subject><subject>Prediction models</subject><subject>Predictive models</subject><subject>Provisioning</subject><subject>Radio equipment</subject><subject>Resource allocation</subject><subject>resource management</subject><subject>Signal to noise ratio</subject><issn>1932-4537</issn><issn>1932-4537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PAjEQhjdGExH9AcZLE8-L_dgu7REQ0ATUCJybsp3FImyxXTAc_efuAjGe5uuddyZPFN0S3CIEy4fpy2TcopjSFqNYcErPogaRjMYJZ-3zf_lldBXCEmMuiKSN6KeDXtwOVmjg9Rq-nf9ELkcDMOB1CQbpwqBHG0pv59u6HuvswxaARqB9YYsFyp1H7xDc1meA3rzb2WDdYWILxIcHgy7sXRVmoW6P3dyuIO6bBaBJrzu5ji5yvQpwc4rNaDboT3tP8eh1-NzrjOKMSlbGDJuU6DYzWZK3hWSECA1yThhnuZC8zTWVBmucpxJrhtOMZloKkwjOcVYBYc3o_ui78e5rC6FUy-rpojqpqGCkQoYFq1TkqMq8C8FDrjberrXfK4JVTVrVpFVNWp1IVzt3xx0LAH96KWQqZcJ-AVSgeMw</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Gorla, Praveen</creator><creator>Keerthivasan, V.</creator><creator>Chamola, Vinay</creator><creator>Guizani, Mohsen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8972-8094</orcidid><orcidid>https://orcid.org/0000-0002-6730-3060</orcidid><orcidid>https://orcid.org/0000-0002-7972-4401</orcidid><orcidid>https://orcid.org/0000-0002-4298-922X</orcidid></search><sort><creationdate>202306</creationdate><title>A Novel Framework of Federated and Distributed Machine Learning for Resource Provisioning in 5G and Beyond Using Mobile-Edge SCBS</title><author>Gorla, Praveen ; Keerthivasan, V. ; Chamola, Vinay ; Guizani, Mohsen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-30d61a73dc4f7893118ae9b1353f89575a29d0a0f690a306c2ca98d48550c8523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>5G and mobile edge nodes</topic><topic>5G mobile communication</topic><topic>Accuracy</topic><topic>Base stations</topic><topic>Computational modeling</topic><topic>Correlation</topic><topic>Electric communication systems</topic><topic>Federated learning</topic><topic>Machine learning</topic><topic>Prediction models</topic><topic>Predictive models</topic><topic>Provisioning</topic><topic>Radio equipment</topic><topic>Resource allocation</topic><topic>resource management</topic><topic>Signal to noise ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorla, Praveen</creatorcontrib><creatorcontrib>Keerthivasan, V.</creatorcontrib><creatorcontrib>Chamola, Vinay</creatorcontrib><creatorcontrib>Guizani, Mohsen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE eTransactions on network and service management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gorla, Praveen</au><au>Keerthivasan, V.</au><au>Chamola, Vinay</au><au>Guizani, Mohsen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Framework of Federated and Distributed Machine Learning for Resource Provisioning in 5G and Beyond Using Mobile-Edge SCBS</atitle><jtitle>IEEE eTransactions on network and service management</jtitle><stitle>T-NSM</stitle><date>2023-06</date><risdate>2023</risdate><volume>20</volume><issue>2</issue><spage>985</spage><epage>994</epage><pages>985-994</pages><issn>1932-4537</issn><eissn>1932-4537</eissn><coden>ITNSC4</coden><abstract>The future needs of the telecommunication system lie in deploying a heterogeneous ultra-dense network with varied topographical use cases. However, this increase in ultra-denseness in 5g and beyond poses several challenges in resource allocation, requiring an accurate learning-based prediction. This paper proposes a novel framework using Federated Learning (FL) and Distributed Machine Learning (DML) for Mobile Edge based resource provisioning to User Equipment (UEs). This work formulates the correlation-based novel procedures between UEs in applying Federated and Distributed Machine Learning through Kolmogorov tests for predicting SNR. The correlations of the distribution obtained through the Kolmogorov test check the extent of Independent and Identically Distributed (IID) - ness between modelled data and evaluate the global model for resource provisioning accuracy. Further, correlation-based DML is also employed to balance the computational load of a mobile edge, which acts as a small cell base station and a computational node. In this approach, we account for correlation-based resource predictive model training to balance the uniform computational load by data distribution methods among the neighbouring mobile Edge SCBS nodes for computation. Together with both DML and FL, we create a novel Framework for resource prediction with minimal time for achieving high accuracy without over-fitting.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNSM.2022.3208522</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8972-8094</orcidid><orcidid>https://orcid.org/0000-0002-6730-3060</orcidid><orcidid>https://orcid.org/0000-0002-7972-4401</orcidid><orcidid>https://orcid.org/0000-0002-4298-922X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-4537 |
ispartof | IEEE eTransactions on network and service management, 2023-06, Vol.20 (2), p.985-994 |
issn | 1932-4537 1932-4537 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TNSM_2022_3208522 |
source | IEEE Electronic Library (IEL) |
subjects | 5G and mobile edge nodes 5G mobile communication Accuracy Base stations Computational modeling Correlation Electric communication systems Federated learning Machine learning Prediction models Predictive models Provisioning Radio equipment Resource allocation resource management Signal to noise ratio |
title | A Novel Framework of Federated and Distributed Machine Learning for Resource Provisioning in 5G and Beyond Using Mobile-Edge SCBS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A32%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Framework%20of%20Federated%20and%20Distributed%20Machine%20Learning%20for%20Resource%20Provisioning%20in%205G%20and%20Beyond%20Using%20Mobile-Edge%20SCBS&rft.jtitle=IEEE%20eTransactions%20on%20network%20and%20service%20management&rft.au=Gorla,%20Praveen&rft.date=2023-06&rft.volume=20&rft.issue=2&rft.spage=985&rft.epage=994&rft.pages=985-994&rft.issn=1932-4537&rft.eissn=1932-4537&rft.coden=ITNSC4&rft_id=info:doi/10.1109/TNSM.2022.3208522&rft_dat=%3Cproquest_RIE%3E2831522083%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2831522083&rft_id=info:pmid/&rft_ieee_id=9896994&rfr_iscdi=true |