NttpFL: Privacy-Preserving Oriented No Trusted Third Party Federated Learning System Based on Blockchain
In federated learning, multiple parties may use their data to cooperatively train a model without exchanging raw data. Federated learning protects the privacy of users to a certain extent. However, model parameters may still expose private information. Moreover, existing encrypted federated learning...
Gespeichert in:
Veröffentlicht in: | IEEE eTransactions on network and service management 2022-12, Vol.19 (4), p.3750-3763 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3763 |
---|---|
container_issue | 4 |
container_start_page | 3750 |
container_title | IEEE eTransactions on network and service management |
container_volume | 19 |
creator | Bai, Shuangjie Yang, Geng Liu, Guoxiu Dai, Hua Rong, Chunming |
description | In federated learning, multiple parties may use their data to cooperatively train a model without exchanging raw data. Federated learning protects the privacy of users to a certain extent. However, model parameters may still expose private information. Moreover, existing encrypted federated learning systems need a trusted third party to generate and distribute key pairs to connected participants, making them unsuitable for federated learning and vulnerable to security risks. To mitigate these issues, we propose a privacy-preserving oriented no trusted third party federated learning system based on blockchain (NttpFL). The initiator of the federated learning task and the partners negotiate keys through the conference key agreement and do not need to distribute keys through a trusted third party. We design a double-layer encryption mechanism to ensure privacy. Partners cannot obtain any private information other than their information. The decentralized nature of blockchain suits our system. In addition, blockchain makes the entire process transparent and traceable and avoids the single node failure problem. Experimental results confirm that the proposed method significantly reduces the communication costs and computational complexity compared to existing encrypted federated learning without compromising the performance and security. |
doi_str_mv | 10.1109/TNSM.2022.3184992 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNSM_2022_3184992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9802707</ieee_id><sourcerecordid>2771521659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-a55a5c383c04aed5ebe1e87c72fdc655ba56b4d5074ad3a39094fbee9d4a577a3</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOKc_QLwJeN2Zj2ZpvHPDqVC3wep1SJNT17m1M-kG_fe2TMSr83J43nPgQeiWkhGlRD1k89X7iBHGRpwmsVLsDA2o4iyKBZfn__IlugphQ4hIqGIDtJ43zX6WPuKlL4_GttHSQwB_LKtPvPAlVA04PK9x5g-hj9m69A4vjW9aPAMH3vTbFIyv-sqq7agdnpjQbesKT7a1_bJrU1bX6KIw2wA3v3OIPmbP2fQ1Shcvb9OnNLKM8SYyQhhhecItiQ04ATlQSKSVrHB2LERuxDiPnSAyNo4broiKixxAudgIKQ0fovvT3b2vvw8QGr2pD77qXmomJRWMjoXqKHqirK9D8FDovS93xreaEt0L1b1Q3QvVv0K7zt2pUwLAH68SwiSR_AdG8nK7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771521659</pqid></control><display><type>article</type><title>NttpFL: Privacy-Preserving Oriented No Trusted Third Party Federated Learning System Based on Blockchain</title><source>IEEE Electronic Library (IEL)</source><creator>Bai, Shuangjie ; Yang, Geng ; Liu, Guoxiu ; Dai, Hua ; Rong, Chunming</creator><creatorcontrib>Bai, Shuangjie ; Yang, Geng ; Liu, Guoxiu ; Dai, Hua ; Rong, Chunming</creatorcontrib><description>In federated learning, multiple parties may use their data to cooperatively train a model without exchanging raw data. Federated learning protects the privacy of users to a certain extent. However, model parameters may still expose private information. Moreover, existing encrypted federated learning systems need a trusted third party to generate and distribute key pairs to connected participants, making them unsuitable for federated learning and vulnerable to security risks. To mitigate these issues, we propose a privacy-preserving oriented no trusted third party federated learning system based on blockchain (NttpFL). The initiator of the federated learning task and the partners negotiate keys through the conference key agreement and do not need to distribute keys through a trusted third party. We design a double-layer encryption mechanism to ensure privacy. Partners cannot obtain any private information other than their information. The decentralized nature of blockchain suits our system. In addition, blockchain makes the entire process transparent and traceable and avoids the single node failure problem. Experimental results confirm that the proposed method significantly reduces the communication costs and computational complexity compared to existing encrypted federated learning without compromising the performance and security.</description><identifier>ISSN: 1932-4537</identifier><identifier>EISSN: 1932-4537</identifier><identifier>DOI: 10.1109/TNSM.2022.3184992</identifier><identifier>CODEN: ITNSC4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Blockchain ; Blockchains ; Cloud computing ; Cognitive tasks ; Collaborative work ; Computational modeling ; Conference key distribution systems ; Cryptography ; Data models ; Encryption ; Federated learning ; Privacy ; privacypreserving ; Security ; Servers ; Third party ; Training ; Trusted third parties</subject><ispartof>IEEE eTransactions on network and service management, 2022-12, Vol.19 (4), p.3750-3763</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-a55a5c383c04aed5ebe1e87c72fdc655ba56b4d5074ad3a39094fbee9d4a577a3</citedby><cites>FETCH-LOGICAL-c223t-a55a5c383c04aed5ebe1e87c72fdc655ba56b4d5074ad3a39094fbee9d4a577a3</cites><orcidid>0000-0003-1063-7585 ; 0000-0002-8347-0539 ; 0000-0001-7740-2401 ; 0000-0003-2465-8977</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9802707$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9802707$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bai, Shuangjie</creatorcontrib><creatorcontrib>Yang, Geng</creatorcontrib><creatorcontrib>Liu, Guoxiu</creatorcontrib><creatorcontrib>Dai, Hua</creatorcontrib><creatorcontrib>Rong, Chunming</creatorcontrib><title>NttpFL: Privacy-Preserving Oriented No Trusted Third Party Federated Learning System Based on Blockchain</title><title>IEEE eTransactions on network and service management</title><addtitle>T-NSM</addtitle><description>In federated learning, multiple parties may use their data to cooperatively train a model without exchanging raw data. Federated learning protects the privacy of users to a certain extent. However, model parameters may still expose private information. Moreover, existing encrypted federated learning systems need a trusted third party to generate and distribute key pairs to connected participants, making them unsuitable for federated learning and vulnerable to security risks. To mitigate these issues, we propose a privacy-preserving oriented no trusted third party federated learning system based on blockchain (NttpFL). The initiator of the federated learning task and the partners negotiate keys through the conference key agreement and do not need to distribute keys through a trusted third party. We design a double-layer encryption mechanism to ensure privacy. Partners cannot obtain any private information other than their information. The decentralized nature of blockchain suits our system. In addition, blockchain makes the entire process transparent and traceable and avoids the single node failure problem. Experimental results confirm that the proposed method significantly reduces the communication costs and computational complexity compared to existing encrypted federated learning without compromising the performance and security.</description><subject>Blockchain</subject><subject>Blockchains</subject><subject>Cloud computing</subject><subject>Cognitive tasks</subject><subject>Collaborative work</subject><subject>Computational modeling</subject><subject>Conference key distribution systems</subject><subject>Cryptography</subject><subject>Data models</subject><subject>Encryption</subject><subject>Federated learning</subject><subject>Privacy</subject><subject>privacypreserving</subject><subject>Security</subject><subject>Servers</subject><subject>Third party</subject><subject>Training</subject><subject>Trusted third parties</subject><issn>1932-4537</issn><issn>1932-4537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhoMoOKc_QLwJeN2Zj2ZpvHPDqVC3wep1SJNT17m1M-kG_fe2TMSr83J43nPgQeiWkhGlRD1k89X7iBHGRpwmsVLsDA2o4iyKBZfn__IlugphQ4hIqGIDtJ43zX6WPuKlL4_GttHSQwB_LKtPvPAlVA04PK9x5g-hj9m69A4vjW9aPAMH3vTbFIyv-sqq7agdnpjQbesKT7a1_bJrU1bX6KIw2wA3v3OIPmbP2fQ1Shcvb9OnNLKM8SYyQhhhecItiQ04ATlQSKSVrHB2LERuxDiPnSAyNo4broiKixxAudgIKQ0fovvT3b2vvw8QGr2pD77qXmomJRWMjoXqKHqirK9D8FDovS93xreaEt0L1b1Q3QvVv0K7zt2pUwLAH68SwiSR_AdG8nK7</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Bai, Shuangjie</creator><creator>Yang, Geng</creator><creator>Liu, Guoxiu</creator><creator>Dai, Hua</creator><creator>Rong, Chunming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1063-7585</orcidid><orcidid>https://orcid.org/0000-0002-8347-0539</orcidid><orcidid>https://orcid.org/0000-0001-7740-2401</orcidid><orcidid>https://orcid.org/0000-0003-2465-8977</orcidid></search><sort><creationdate>202212</creationdate><title>NttpFL: Privacy-Preserving Oriented No Trusted Third Party Federated Learning System Based on Blockchain</title><author>Bai, Shuangjie ; Yang, Geng ; Liu, Guoxiu ; Dai, Hua ; Rong, Chunming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-a55a5c383c04aed5ebe1e87c72fdc655ba56b4d5074ad3a39094fbee9d4a577a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Blockchain</topic><topic>Blockchains</topic><topic>Cloud computing</topic><topic>Cognitive tasks</topic><topic>Collaborative work</topic><topic>Computational modeling</topic><topic>Conference key distribution systems</topic><topic>Cryptography</topic><topic>Data models</topic><topic>Encryption</topic><topic>Federated learning</topic><topic>Privacy</topic><topic>privacypreserving</topic><topic>Security</topic><topic>Servers</topic><topic>Third party</topic><topic>Training</topic><topic>Trusted third parties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Shuangjie</creatorcontrib><creatorcontrib>Yang, Geng</creatorcontrib><creatorcontrib>Liu, Guoxiu</creatorcontrib><creatorcontrib>Dai, Hua</creatorcontrib><creatorcontrib>Rong, Chunming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE eTransactions on network and service management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bai, Shuangjie</au><au>Yang, Geng</au><au>Liu, Guoxiu</au><au>Dai, Hua</au><au>Rong, Chunming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NttpFL: Privacy-Preserving Oriented No Trusted Third Party Federated Learning System Based on Blockchain</atitle><jtitle>IEEE eTransactions on network and service management</jtitle><stitle>T-NSM</stitle><date>2022-12</date><risdate>2022</risdate><volume>19</volume><issue>4</issue><spage>3750</spage><epage>3763</epage><pages>3750-3763</pages><issn>1932-4537</issn><eissn>1932-4537</eissn><coden>ITNSC4</coden><abstract>In federated learning, multiple parties may use their data to cooperatively train a model without exchanging raw data. Federated learning protects the privacy of users to a certain extent. However, model parameters may still expose private information. Moreover, existing encrypted federated learning systems need a trusted third party to generate and distribute key pairs to connected participants, making them unsuitable for federated learning and vulnerable to security risks. To mitigate these issues, we propose a privacy-preserving oriented no trusted third party federated learning system based on blockchain (NttpFL). The initiator of the federated learning task and the partners negotiate keys through the conference key agreement and do not need to distribute keys through a trusted third party. We design a double-layer encryption mechanism to ensure privacy. Partners cannot obtain any private information other than their information. The decentralized nature of blockchain suits our system. In addition, blockchain makes the entire process transparent and traceable and avoids the single node failure problem. Experimental results confirm that the proposed method significantly reduces the communication costs and computational complexity compared to existing encrypted federated learning without compromising the performance and security.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNSM.2022.3184992</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1063-7585</orcidid><orcidid>https://orcid.org/0000-0002-8347-0539</orcidid><orcidid>https://orcid.org/0000-0001-7740-2401</orcidid><orcidid>https://orcid.org/0000-0003-2465-8977</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-4537 |
ispartof | IEEE eTransactions on network and service management, 2022-12, Vol.19 (4), p.3750-3763 |
issn | 1932-4537 1932-4537 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TNSM_2022_3184992 |
source | IEEE Electronic Library (IEL) |
subjects | Blockchain Blockchains Cloud computing Cognitive tasks Collaborative work Computational modeling Conference key distribution systems Cryptography Data models Encryption Federated learning Privacy privacypreserving Security Servers Third party Training Trusted third parties |
title | NttpFL: Privacy-Preserving Oriented No Trusted Third Party Federated Learning System Based on Blockchain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T06%3A19%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NttpFL:%20Privacy-Preserving%20Oriented%20No%20Trusted%20Third%20Party%20Federated%20Learning%20System%20Based%20on%20Blockchain&rft.jtitle=IEEE%20eTransactions%20on%20network%20and%20service%20management&rft.au=Bai,%20Shuangjie&rft.date=2022-12&rft.volume=19&rft.issue=4&rft.spage=3750&rft.epage=3763&rft.pages=3750-3763&rft.issn=1932-4537&rft.eissn=1932-4537&rft.coden=ITNSC4&rft_id=info:doi/10.1109/TNSM.2022.3184992&rft_dat=%3Cproquest_RIE%3E2771521659%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771521659&rft_id=info:pmid/&rft_ieee_id=9802707&rfr_iscdi=true |