NttpFL: Privacy-Preserving Oriented No Trusted Third Party Federated Learning System Based on Blockchain

In federated learning, multiple parties may use their data to cooperatively train a model without exchanging raw data. Federated learning protects the privacy of users to a certain extent. However, model parameters may still expose private information. Moreover, existing encrypted federated learning...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE eTransactions on network and service management 2022-12, Vol.19 (4), p.3750-3763
Hauptverfasser: Bai, Shuangjie, Yang, Geng, Liu, Guoxiu, Dai, Hua, Rong, Chunming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3763
container_issue 4
container_start_page 3750
container_title IEEE eTransactions on network and service management
container_volume 19
creator Bai, Shuangjie
Yang, Geng
Liu, Guoxiu
Dai, Hua
Rong, Chunming
description In federated learning, multiple parties may use their data to cooperatively train a model without exchanging raw data. Federated learning protects the privacy of users to a certain extent. However, model parameters may still expose private information. Moreover, existing encrypted federated learning systems need a trusted third party to generate and distribute key pairs to connected participants, making them unsuitable for federated learning and vulnerable to security risks. To mitigate these issues, we propose a privacy-preserving oriented no trusted third party federated learning system based on blockchain (NttpFL). The initiator of the federated learning task and the partners negotiate keys through the conference key agreement and do not need to distribute keys through a trusted third party. We design a double-layer encryption mechanism to ensure privacy. Partners cannot obtain any private information other than their information. The decentralized nature of blockchain suits our system. In addition, blockchain makes the entire process transparent and traceable and avoids the single node failure problem. Experimental results confirm that the proposed method significantly reduces the communication costs and computational complexity compared to existing encrypted federated learning without compromising the performance and security.
doi_str_mv 10.1109/TNSM.2022.3184992
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNSM_2022_3184992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9802707</ieee_id><sourcerecordid>2771521659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-a55a5c383c04aed5ebe1e87c72fdc655ba56b4d5074ad3a39094fbee9d4a577a3</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOKc_QLwJeN2Zj2ZpvHPDqVC3wep1SJNT17m1M-kG_fe2TMSr83J43nPgQeiWkhGlRD1k89X7iBHGRpwmsVLsDA2o4iyKBZfn__IlugphQ4hIqGIDtJ43zX6WPuKlL4_GttHSQwB_LKtPvPAlVA04PK9x5g-hj9m69A4vjW9aPAMH3vTbFIyv-sqq7agdnpjQbesKT7a1_bJrU1bX6KIw2wA3v3OIPmbP2fQ1Shcvb9OnNLKM8SYyQhhhecItiQ04ATlQSKSVrHB2LERuxDiPnSAyNo4broiKixxAudgIKQ0fovvT3b2vvw8QGr2pD77qXmomJRWMjoXqKHqirK9D8FDovS93xreaEt0L1b1Q3QvVv0K7zt2pUwLAH68SwiSR_AdG8nK7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771521659</pqid></control><display><type>article</type><title>NttpFL: Privacy-Preserving Oriented No Trusted Third Party Federated Learning System Based on Blockchain</title><source>IEEE Electronic Library (IEL)</source><creator>Bai, Shuangjie ; Yang, Geng ; Liu, Guoxiu ; Dai, Hua ; Rong, Chunming</creator><creatorcontrib>Bai, Shuangjie ; Yang, Geng ; Liu, Guoxiu ; Dai, Hua ; Rong, Chunming</creatorcontrib><description>In federated learning, multiple parties may use their data to cooperatively train a model without exchanging raw data. Federated learning protects the privacy of users to a certain extent. However, model parameters may still expose private information. Moreover, existing encrypted federated learning systems need a trusted third party to generate and distribute key pairs to connected participants, making them unsuitable for federated learning and vulnerable to security risks. To mitigate these issues, we propose a privacy-preserving oriented no trusted third party federated learning system based on blockchain (NttpFL). The initiator of the federated learning task and the partners negotiate keys through the conference key agreement and do not need to distribute keys through a trusted third party. We design a double-layer encryption mechanism to ensure privacy. Partners cannot obtain any private information other than their information. The decentralized nature of blockchain suits our system. In addition, blockchain makes the entire process transparent and traceable and avoids the single node failure problem. Experimental results confirm that the proposed method significantly reduces the communication costs and computational complexity compared to existing encrypted federated learning without compromising the performance and security.</description><identifier>ISSN: 1932-4537</identifier><identifier>EISSN: 1932-4537</identifier><identifier>DOI: 10.1109/TNSM.2022.3184992</identifier><identifier>CODEN: ITNSC4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Blockchain ; Blockchains ; Cloud computing ; Cognitive tasks ; Collaborative work ; Computational modeling ; Conference key distribution systems ; Cryptography ; Data models ; Encryption ; Federated learning ; Privacy ; privacypreserving ; Security ; Servers ; Third party ; Training ; Trusted third parties</subject><ispartof>IEEE eTransactions on network and service management, 2022-12, Vol.19 (4), p.3750-3763</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-a55a5c383c04aed5ebe1e87c72fdc655ba56b4d5074ad3a39094fbee9d4a577a3</citedby><cites>FETCH-LOGICAL-c223t-a55a5c383c04aed5ebe1e87c72fdc655ba56b4d5074ad3a39094fbee9d4a577a3</cites><orcidid>0000-0003-1063-7585 ; 0000-0002-8347-0539 ; 0000-0001-7740-2401 ; 0000-0003-2465-8977</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9802707$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9802707$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bai, Shuangjie</creatorcontrib><creatorcontrib>Yang, Geng</creatorcontrib><creatorcontrib>Liu, Guoxiu</creatorcontrib><creatorcontrib>Dai, Hua</creatorcontrib><creatorcontrib>Rong, Chunming</creatorcontrib><title>NttpFL: Privacy-Preserving Oriented No Trusted Third Party Federated Learning System Based on Blockchain</title><title>IEEE eTransactions on network and service management</title><addtitle>T-NSM</addtitle><description>In federated learning, multiple parties may use their data to cooperatively train a model without exchanging raw data. Federated learning protects the privacy of users to a certain extent. However, model parameters may still expose private information. Moreover, existing encrypted federated learning systems need a trusted third party to generate and distribute key pairs to connected participants, making them unsuitable for federated learning and vulnerable to security risks. To mitigate these issues, we propose a privacy-preserving oriented no trusted third party federated learning system based on blockchain (NttpFL). The initiator of the federated learning task and the partners negotiate keys through the conference key agreement and do not need to distribute keys through a trusted third party. We design a double-layer encryption mechanism to ensure privacy. Partners cannot obtain any private information other than their information. The decentralized nature of blockchain suits our system. In addition, blockchain makes the entire process transparent and traceable and avoids the single node failure problem. Experimental results confirm that the proposed method significantly reduces the communication costs and computational complexity compared to existing encrypted federated learning without compromising the performance and security.</description><subject>Blockchain</subject><subject>Blockchains</subject><subject>Cloud computing</subject><subject>Cognitive tasks</subject><subject>Collaborative work</subject><subject>Computational modeling</subject><subject>Conference key distribution systems</subject><subject>Cryptography</subject><subject>Data models</subject><subject>Encryption</subject><subject>Federated learning</subject><subject>Privacy</subject><subject>privacypreserving</subject><subject>Security</subject><subject>Servers</subject><subject>Third party</subject><subject>Training</subject><subject>Trusted third parties</subject><issn>1932-4537</issn><issn>1932-4537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhoMoOKc_QLwJeN2Zj2ZpvHPDqVC3wep1SJNT17m1M-kG_fe2TMSr83J43nPgQeiWkhGlRD1k89X7iBHGRpwmsVLsDA2o4iyKBZfn__IlugphQ4hIqGIDtJ43zX6WPuKlL4_GttHSQwB_LKtPvPAlVA04PK9x5g-hj9m69A4vjW9aPAMH3vTbFIyv-sqq7agdnpjQbesKT7a1_bJrU1bX6KIw2wA3v3OIPmbP2fQ1Shcvb9OnNLKM8SYyQhhhecItiQ04ATlQSKSVrHB2LERuxDiPnSAyNo4broiKixxAudgIKQ0fovvT3b2vvw8QGr2pD77qXmomJRWMjoXqKHqirK9D8FDovS93xreaEt0L1b1Q3QvVv0K7zt2pUwLAH68SwiSR_AdG8nK7</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Bai, Shuangjie</creator><creator>Yang, Geng</creator><creator>Liu, Guoxiu</creator><creator>Dai, Hua</creator><creator>Rong, Chunming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1063-7585</orcidid><orcidid>https://orcid.org/0000-0002-8347-0539</orcidid><orcidid>https://orcid.org/0000-0001-7740-2401</orcidid><orcidid>https://orcid.org/0000-0003-2465-8977</orcidid></search><sort><creationdate>202212</creationdate><title>NttpFL: Privacy-Preserving Oriented No Trusted Third Party Federated Learning System Based on Blockchain</title><author>Bai, Shuangjie ; Yang, Geng ; Liu, Guoxiu ; Dai, Hua ; Rong, Chunming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-a55a5c383c04aed5ebe1e87c72fdc655ba56b4d5074ad3a39094fbee9d4a577a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Blockchain</topic><topic>Blockchains</topic><topic>Cloud computing</topic><topic>Cognitive tasks</topic><topic>Collaborative work</topic><topic>Computational modeling</topic><topic>Conference key distribution systems</topic><topic>Cryptography</topic><topic>Data models</topic><topic>Encryption</topic><topic>Federated learning</topic><topic>Privacy</topic><topic>privacypreserving</topic><topic>Security</topic><topic>Servers</topic><topic>Third party</topic><topic>Training</topic><topic>Trusted third parties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Shuangjie</creatorcontrib><creatorcontrib>Yang, Geng</creatorcontrib><creatorcontrib>Liu, Guoxiu</creatorcontrib><creatorcontrib>Dai, Hua</creatorcontrib><creatorcontrib>Rong, Chunming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE eTransactions on network and service management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bai, Shuangjie</au><au>Yang, Geng</au><au>Liu, Guoxiu</au><au>Dai, Hua</au><au>Rong, Chunming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NttpFL: Privacy-Preserving Oriented No Trusted Third Party Federated Learning System Based on Blockchain</atitle><jtitle>IEEE eTransactions on network and service management</jtitle><stitle>T-NSM</stitle><date>2022-12</date><risdate>2022</risdate><volume>19</volume><issue>4</issue><spage>3750</spage><epage>3763</epage><pages>3750-3763</pages><issn>1932-4537</issn><eissn>1932-4537</eissn><coden>ITNSC4</coden><abstract>In federated learning, multiple parties may use their data to cooperatively train a model without exchanging raw data. Federated learning protects the privacy of users to a certain extent. However, model parameters may still expose private information. Moreover, existing encrypted federated learning systems need a trusted third party to generate and distribute key pairs to connected participants, making them unsuitable for federated learning and vulnerable to security risks. To mitigate these issues, we propose a privacy-preserving oriented no trusted third party federated learning system based on blockchain (NttpFL). The initiator of the federated learning task and the partners negotiate keys through the conference key agreement and do not need to distribute keys through a trusted third party. We design a double-layer encryption mechanism to ensure privacy. Partners cannot obtain any private information other than their information. The decentralized nature of blockchain suits our system. In addition, blockchain makes the entire process transparent and traceable and avoids the single node failure problem. Experimental results confirm that the proposed method significantly reduces the communication costs and computational complexity compared to existing encrypted federated learning without compromising the performance and security.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNSM.2022.3184992</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1063-7585</orcidid><orcidid>https://orcid.org/0000-0002-8347-0539</orcidid><orcidid>https://orcid.org/0000-0001-7740-2401</orcidid><orcidid>https://orcid.org/0000-0003-2465-8977</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4537
ispartof IEEE eTransactions on network and service management, 2022-12, Vol.19 (4), p.3750-3763
issn 1932-4537
1932-4537
language eng
recordid cdi_crossref_primary_10_1109_TNSM_2022_3184992
source IEEE Electronic Library (IEL)
subjects Blockchain
Blockchains
Cloud computing
Cognitive tasks
Collaborative work
Computational modeling
Conference key distribution systems
Cryptography
Data models
Encryption
Federated learning
Privacy
privacypreserving
Security
Servers
Third party
Training
Trusted third parties
title NttpFL: Privacy-Preserving Oriented No Trusted Third Party Federated Learning System Based on Blockchain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T06%3A19%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NttpFL:%20Privacy-Preserving%20Oriented%20No%20Trusted%20Third%20Party%20Federated%20Learning%20System%20Based%20on%20Blockchain&rft.jtitle=IEEE%20eTransactions%20on%20network%20and%20service%20management&rft.au=Bai,%20Shuangjie&rft.date=2022-12&rft.volume=19&rft.issue=4&rft.spage=3750&rft.epage=3763&rft.pages=3750-3763&rft.issn=1932-4537&rft.eissn=1932-4537&rft.coden=ITNSC4&rft_id=info:doi/10.1109/TNSM.2022.3184992&rft_dat=%3Cproquest_RIE%3E2771521659%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771521659&rft_id=info:pmid/&rft_ieee_id=9802707&rfr_iscdi=true