STAD: Spatio-Temporal Anomaly Detection Mechanism for Mobile Network Management
Unusual Spatio-Temporal fluctuations in cellular network traffic may lead to drastic network management misbehaviors and at least abnormal drops in quality of experience. It is also expected that the management of future cellular networks will mostly rely on machine learning and automation. In this...
Gespeichert in:
Veröffentlicht in: | IEEE eTransactions on network and service management 2021-03, Vol.18 (1), p.894-906 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 906 |
---|---|
container_issue | 1 |
container_start_page | 894 |
container_title | IEEE eTransactions on network and service management |
container_volume | 18 |
creator | Dridi, Aicha Boucetta, Cherifa Hammami, Seif Eddine Afifi, Hossam Moungla, Hassine |
description | Unusual Spatio-Temporal fluctuations in cellular network traffic may lead to drastic network management misbehaviors and at least abnormal drops in quality of experience. It is also expected that the management of future cellular networks will mostly rely on machine learning and automation. In this article, we present a dynamic on-line data mining technique to detect these network anomalies allowing, network operators to pro-actively monitor and control a variety of real-world phenomena with less damage to the overall experience. To overcome the network performance degradation that can occur in real time, the network manager must imperatively and instantly identify abnormalities and hence provide a better continuous quality of service for the subscribers. Based on real cellular communication traces, we propose an automated framework, called STAD, ensuring spatio-temporal detection outliers using a combination of machine learning techniques including One-class SVM (OCSVM), Support Vector Regression (SVR) and recurrent neural networks, Long Short-Term Memory (LSTM). STAD is double checked with two real datasets of CDRs where results show high accuracy compared to the Isolation Forest and Auto-Regressive Integrated Moving Average (ARIMA) models. |
doi_str_mv | 10.1109/TNSM.2020.3048131 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNSM_2020_3048131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9311155</ieee_id><sourcerecordid>2501323456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-3f87a225bde493aa4a905321029125e05f64391ed7dbd6fe00fbae97c06609513</originalsourceid><addsrcrecordid>eNpNkMFOwkAQhhujiYg-gPHSxJOH4sxOt2W9EVAxoXAAz5ulTKXYdnFbNLy9NBjiaSYz3z-ZfJ53i9BDBPW4mM6TngABPYKwj4RnXgcViSCUFJ__6y-9q7reAMg-KtHxZvPFYPTkz7emyW2w4HJrnSn8QWVLU-z9ETecHjaVn3C6NlVel35mnZ_YZV6wP-Xmx7pPPzGV-eCSq-bau8hMUfPNX-167y_Pi-E4mMxe34aDSZCSiJuAsn5shJDLFYeKjAmNAkkCQSgUkkFmUUgKeRWvlqsoY4BsaVjFKUQRKInU9R6Od9em0FuXl8bttTW5Hg8mup0BIcmY1HfL3h_ZrbNfO64bvbE7Vx3e00ICkqBQRgcKj1TqbF07zk5nEXTrWLeOdetY_zk-ZO6OmZyZT7wiRJSSfgH3VXWN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501323456</pqid></control><display><type>article</type><title>STAD: Spatio-Temporal Anomaly Detection Mechanism for Mobile Network Management</title><source>IEEE Electronic Library (IEL)</source><creator>Dridi, Aicha ; Boucetta, Cherifa ; Hammami, Seif Eddine ; Afifi, Hossam ; Moungla, Hassine</creator><creatorcontrib>Dridi, Aicha ; Boucetta, Cherifa ; Hammami, Seif Eddine ; Afifi, Hossam ; Moungla, Hassine</creatorcontrib><description>Unusual Spatio-Temporal fluctuations in cellular network traffic may lead to drastic network management misbehaviors and at least abnormal drops in quality of experience. It is also expected that the management of future cellular networks will mostly rely on machine learning and automation. In this article, we present a dynamic on-line data mining technique to detect these network anomalies allowing, network operators to pro-actively monitor and control a variety of real-world phenomena with less damage to the overall experience. To overcome the network performance degradation that can occur in real time, the network manager must imperatively and instantly identify abnormalities and hence provide a better continuous quality of service for the subscribers. Based on real cellular communication traces, we propose an automated framework, called STAD, ensuring spatio-temporal detection outliers using a combination of machine learning techniques including One-class SVM (OCSVM), Support Vector Regression (SVR) and recurrent neural networks, Long Short-Term Memory (LSTM). STAD is double checked with two real datasets of CDRs where results show high accuracy compared to the Isolation Forest and Auto-Regressive Integrated Moving Average (ARIMA) models.</description><identifier>ISSN: 1932-4537</identifier><identifier>EISSN: 1932-4537</identifier><identifier>DOI: 10.1109/TNSM.2020.3048131</identifier><identifier>CODEN: ITNSC4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Abnormalities ; Anomalies ; Anomaly detection ; Automation ; Autoregressive models ; Biological system modeling ; CDR ; Cellular communication ; Cellular networks ; Communications traffic ; Computer Science ; Data analysis ; Data mining ; Data models ; Fault detection ; Hidden Markov models ; isolation forest ; long short term memory LSTM ; Machine learning ; network management ; network outliers ; OCSVM ; Outliers (statistics) ; Performance degradation ; pro-active management ; Recurrent neural networks ; Statistical analysis ; Support vector machines ; SVR</subject><ispartof>IEEE eTransactions on network and service management, 2021-03, Vol.18 (1), p.894-906</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-3f87a225bde493aa4a905321029125e05f64391ed7dbd6fe00fbae97c06609513</citedby><cites>FETCH-LOGICAL-c327t-3f87a225bde493aa4a905321029125e05f64391ed7dbd6fe00fbae97c06609513</cites><orcidid>0000-0002-0325-6680 ; 0000-0003-3261-4501 ; 0000-0002-4490-9027 ; 0000-0002-1723-7536 ; 0000-0002-3078-0824</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9311155$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9311155$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-03135739$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dridi, Aicha</creatorcontrib><creatorcontrib>Boucetta, Cherifa</creatorcontrib><creatorcontrib>Hammami, Seif Eddine</creatorcontrib><creatorcontrib>Afifi, Hossam</creatorcontrib><creatorcontrib>Moungla, Hassine</creatorcontrib><title>STAD: Spatio-Temporal Anomaly Detection Mechanism for Mobile Network Management</title><title>IEEE eTransactions on network and service management</title><addtitle>T-NSM</addtitle><description>Unusual Spatio-Temporal fluctuations in cellular network traffic may lead to drastic network management misbehaviors and at least abnormal drops in quality of experience. It is also expected that the management of future cellular networks will mostly rely on machine learning and automation. In this article, we present a dynamic on-line data mining technique to detect these network anomalies allowing, network operators to pro-actively monitor and control a variety of real-world phenomena with less damage to the overall experience. To overcome the network performance degradation that can occur in real time, the network manager must imperatively and instantly identify abnormalities and hence provide a better continuous quality of service for the subscribers. Based on real cellular communication traces, we propose an automated framework, called STAD, ensuring spatio-temporal detection outliers using a combination of machine learning techniques including One-class SVM (OCSVM), Support Vector Regression (SVR) and recurrent neural networks, Long Short-Term Memory (LSTM). STAD is double checked with two real datasets of CDRs where results show high accuracy compared to the Isolation Forest and Auto-Regressive Integrated Moving Average (ARIMA) models.</description><subject>Abnormalities</subject><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>Automation</subject><subject>Autoregressive models</subject><subject>Biological system modeling</subject><subject>CDR</subject><subject>Cellular communication</subject><subject>Cellular networks</subject><subject>Communications traffic</subject><subject>Computer Science</subject><subject>Data analysis</subject><subject>Data mining</subject><subject>Data models</subject><subject>Fault detection</subject><subject>Hidden Markov models</subject><subject>isolation forest</subject><subject>long short term memory LSTM</subject><subject>Machine learning</subject><subject>network management</subject><subject>network outliers</subject><subject>OCSVM</subject><subject>Outliers (statistics)</subject><subject>Performance degradation</subject><subject>pro-active management</subject><subject>Recurrent neural networks</subject><subject>Statistical analysis</subject><subject>Support vector machines</subject><subject>SVR</subject><issn>1932-4537</issn><issn>1932-4537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFOwkAQhhujiYg-gPHSxJOH4sxOt2W9EVAxoXAAz5ulTKXYdnFbNLy9NBjiaSYz3z-ZfJ53i9BDBPW4mM6TngABPYKwj4RnXgcViSCUFJ__6y-9q7reAMg-KtHxZvPFYPTkz7emyW2w4HJrnSn8QWVLU-z9ETecHjaVn3C6NlVel35mnZ_YZV6wP-Xmx7pPPzGV-eCSq-bau8hMUfPNX-167y_Pi-E4mMxe34aDSZCSiJuAsn5shJDLFYeKjAmNAkkCQSgUkkFmUUgKeRWvlqsoY4BsaVjFKUQRKInU9R6Od9em0FuXl8bttTW5Hg8mup0BIcmY1HfL3h_ZrbNfO64bvbE7Vx3e00ICkqBQRgcKj1TqbF07zk5nEXTrWLeOdetY_zk-ZO6OmZyZT7wiRJSSfgH3VXWN</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Dridi, Aicha</creator><creator>Boucetta, Cherifa</creator><creator>Hammami, Seif Eddine</creator><creator>Afifi, Hossam</creator><creator>Moungla, Hassine</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0325-6680</orcidid><orcidid>https://orcid.org/0000-0003-3261-4501</orcidid><orcidid>https://orcid.org/0000-0002-4490-9027</orcidid><orcidid>https://orcid.org/0000-0002-1723-7536</orcidid><orcidid>https://orcid.org/0000-0002-3078-0824</orcidid></search><sort><creationdate>202103</creationdate><title>STAD: Spatio-Temporal Anomaly Detection Mechanism for Mobile Network Management</title><author>Dridi, Aicha ; Boucetta, Cherifa ; Hammami, Seif Eddine ; Afifi, Hossam ; Moungla, Hassine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-3f87a225bde493aa4a905321029125e05f64391ed7dbd6fe00fbae97c06609513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abnormalities</topic><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>Automation</topic><topic>Autoregressive models</topic><topic>Biological system modeling</topic><topic>CDR</topic><topic>Cellular communication</topic><topic>Cellular networks</topic><topic>Communications traffic</topic><topic>Computer Science</topic><topic>Data analysis</topic><topic>Data mining</topic><topic>Data models</topic><topic>Fault detection</topic><topic>Hidden Markov models</topic><topic>isolation forest</topic><topic>long short term memory LSTM</topic><topic>Machine learning</topic><topic>network management</topic><topic>network outliers</topic><topic>OCSVM</topic><topic>Outliers (statistics)</topic><topic>Performance degradation</topic><topic>pro-active management</topic><topic>Recurrent neural networks</topic><topic>Statistical analysis</topic><topic>Support vector machines</topic><topic>SVR</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dridi, Aicha</creatorcontrib><creatorcontrib>Boucetta, Cherifa</creatorcontrib><creatorcontrib>Hammami, Seif Eddine</creatorcontrib><creatorcontrib>Afifi, Hossam</creatorcontrib><creatorcontrib>Moungla, Hassine</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE eTransactions on network and service management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dridi, Aicha</au><au>Boucetta, Cherifa</au><au>Hammami, Seif Eddine</au><au>Afifi, Hossam</au><au>Moungla, Hassine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>STAD: Spatio-Temporal Anomaly Detection Mechanism for Mobile Network Management</atitle><jtitle>IEEE eTransactions on network and service management</jtitle><stitle>T-NSM</stitle><date>2021-03</date><risdate>2021</risdate><volume>18</volume><issue>1</issue><spage>894</spage><epage>906</epage><pages>894-906</pages><issn>1932-4537</issn><eissn>1932-4537</eissn><coden>ITNSC4</coden><abstract>Unusual Spatio-Temporal fluctuations in cellular network traffic may lead to drastic network management misbehaviors and at least abnormal drops in quality of experience. It is also expected that the management of future cellular networks will mostly rely on machine learning and automation. In this article, we present a dynamic on-line data mining technique to detect these network anomalies allowing, network operators to pro-actively monitor and control a variety of real-world phenomena with less damage to the overall experience. To overcome the network performance degradation that can occur in real time, the network manager must imperatively and instantly identify abnormalities and hence provide a better continuous quality of service for the subscribers. Based on real cellular communication traces, we propose an automated framework, called STAD, ensuring spatio-temporal detection outliers using a combination of machine learning techniques including One-class SVM (OCSVM), Support Vector Regression (SVR) and recurrent neural networks, Long Short-Term Memory (LSTM). STAD is double checked with two real datasets of CDRs where results show high accuracy compared to the Isolation Forest and Auto-Regressive Integrated Moving Average (ARIMA) models.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNSM.2020.3048131</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0325-6680</orcidid><orcidid>https://orcid.org/0000-0003-3261-4501</orcidid><orcidid>https://orcid.org/0000-0002-4490-9027</orcidid><orcidid>https://orcid.org/0000-0002-1723-7536</orcidid><orcidid>https://orcid.org/0000-0002-3078-0824</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-4537 |
ispartof | IEEE eTransactions on network and service management, 2021-03, Vol.18 (1), p.894-906 |
issn | 1932-4537 1932-4537 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TNSM_2020_3048131 |
source | IEEE Electronic Library (IEL) |
subjects | Abnormalities Anomalies Anomaly detection Automation Autoregressive models Biological system modeling CDR Cellular communication Cellular networks Communications traffic Computer Science Data analysis Data mining Data models Fault detection Hidden Markov models isolation forest long short term memory LSTM Machine learning network management network outliers OCSVM Outliers (statistics) Performance degradation pro-active management Recurrent neural networks Statistical analysis Support vector machines SVR |
title | STAD: Spatio-Temporal Anomaly Detection Mechanism for Mobile Network Management |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A44%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=STAD:%20Spatio-Temporal%20Anomaly%20Detection%20Mechanism%20for%20Mobile%20Network%20Management&rft.jtitle=IEEE%20eTransactions%20on%20network%20and%20service%20management&rft.au=Dridi,%20Aicha&rft.date=2021-03&rft.volume=18&rft.issue=1&rft.spage=894&rft.epage=906&rft.pages=894-906&rft.issn=1932-4537&rft.eissn=1932-4537&rft.coden=ITNSC4&rft_id=info:doi/10.1109/TNSM.2020.3048131&rft_dat=%3Cproquest_RIE%3E2501323456%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501323456&rft_id=info:pmid/&rft_ieee_id=9311155&rfr_iscdi=true |