STAD: Spatio-Temporal Anomaly Detection Mechanism for Mobile Network Management

Unusual Spatio-Temporal fluctuations in cellular network traffic may lead to drastic network management misbehaviors and at least abnormal drops in quality of experience. It is also expected that the management of future cellular networks will mostly rely on machine learning and automation. In this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE eTransactions on network and service management 2021-03, Vol.18 (1), p.894-906
Hauptverfasser: Dridi, Aicha, Boucetta, Cherifa, Hammami, Seif Eddine, Afifi, Hossam, Moungla, Hassine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 906
container_issue 1
container_start_page 894
container_title IEEE eTransactions on network and service management
container_volume 18
creator Dridi, Aicha
Boucetta, Cherifa
Hammami, Seif Eddine
Afifi, Hossam
Moungla, Hassine
description Unusual Spatio-Temporal fluctuations in cellular network traffic may lead to drastic network management misbehaviors and at least abnormal drops in quality of experience. It is also expected that the management of future cellular networks will mostly rely on machine learning and automation. In this article, we present a dynamic on-line data mining technique to detect these network anomalies allowing, network operators to pro-actively monitor and control a variety of real-world phenomena with less damage to the overall experience. To overcome the network performance degradation that can occur in real time, the network manager must imperatively and instantly identify abnormalities and hence provide a better continuous quality of service for the subscribers. Based on real cellular communication traces, we propose an automated framework, called STAD, ensuring spatio-temporal detection outliers using a combination of machine learning techniques including One-class SVM (OCSVM), Support Vector Regression (SVR) and recurrent neural networks, Long Short-Term Memory (LSTM). STAD is double checked with two real datasets of CDRs where results show high accuracy compared to the Isolation Forest and Auto-Regressive Integrated Moving Average (ARIMA) models.
doi_str_mv 10.1109/TNSM.2020.3048131
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNSM_2020_3048131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9311155</ieee_id><sourcerecordid>2501323456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-3f87a225bde493aa4a905321029125e05f64391ed7dbd6fe00fbae97c06609513</originalsourceid><addsrcrecordid>eNpNkMFOwkAQhhujiYg-gPHSxJOH4sxOt2W9EVAxoXAAz5ulTKXYdnFbNLy9NBjiaSYz3z-ZfJ53i9BDBPW4mM6TngABPYKwj4RnXgcViSCUFJ__6y-9q7reAMg-KtHxZvPFYPTkz7emyW2w4HJrnSn8QWVLU-z9ETecHjaVn3C6NlVel35mnZ_YZV6wP-Xmx7pPPzGV-eCSq-bau8hMUfPNX-167y_Pi-E4mMxe34aDSZCSiJuAsn5shJDLFYeKjAmNAkkCQSgUkkFmUUgKeRWvlqsoY4BsaVjFKUQRKInU9R6Od9em0FuXl8bttTW5Hg8mup0BIcmY1HfL3h_ZrbNfO64bvbE7Vx3e00ICkqBQRgcKj1TqbF07zk5nEXTrWLeOdetY_zk-ZO6OmZyZT7wiRJSSfgH3VXWN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501323456</pqid></control><display><type>article</type><title>STAD: Spatio-Temporal Anomaly Detection Mechanism for Mobile Network Management</title><source>IEEE Electronic Library (IEL)</source><creator>Dridi, Aicha ; Boucetta, Cherifa ; Hammami, Seif Eddine ; Afifi, Hossam ; Moungla, Hassine</creator><creatorcontrib>Dridi, Aicha ; Boucetta, Cherifa ; Hammami, Seif Eddine ; Afifi, Hossam ; Moungla, Hassine</creatorcontrib><description>Unusual Spatio-Temporal fluctuations in cellular network traffic may lead to drastic network management misbehaviors and at least abnormal drops in quality of experience. It is also expected that the management of future cellular networks will mostly rely on machine learning and automation. In this article, we present a dynamic on-line data mining technique to detect these network anomalies allowing, network operators to pro-actively monitor and control a variety of real-world phenomena with less damage to the overall experience. To overcome the network performance degradation that can occur in real time, the network manager must imperatively and instantly identify abnormalities and hence provide a better continuous quality of service for the subscribers. Based on real cellular communication traces, we propose an automated framework, called STAD, ensuring spatio-temporal detection outliers using a combination of machine learning techniques including One-class SVM (OCSVM), Support Vector Regression (SVR) and recurrent neural networks, Long Short-Term Memory (LSTM). STAD is double checked with two real datasets of CDRs where results show high accuracy compared to the Isolation Forest and Auto-Regressive Integrated Moving Average (ARIMA) models.</description><identifier>ISSN: 1932-4537</identifier><identifier>EISSN: 1932-4537</identifier><identifier>DOI: 10.1109/TNSM.2020.3048131</identifier><identifier>CODEN: ITNSC4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Abnormalities ; Anomalies ; Anomaly detection ; Automation ; Autoregressive models ; Biological system modeling ; CDR ; Cellular communication ; Cellular networks ; Communications traffic ; Computer Science ; Data analysis ; Data mining ; Data models ; Fault detection ; Hidden Markov models ; isolation forest ; long short term memory LSTM ; Machine learning ; network management ; network outliers ; OCSVM ; Outliers (statistics) ; Performance degradation ; pro-active management ; Recurrent neural networks ; Statistical analysis ; Support vector machines ; SVR</subject><ispartof>IEEE eTransactions on network and service management, 2021-03, Vol.18 (1), p.894-906</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-3f87a225bde493aa4a905321029125e05f64391ed7dbd6fe00fbae97c06609513</citedby><cites>FETCH-LOGICAL-c327t-3f87a225bde493aa4a905321029125e05f64391ed7dbd6fe00fbae97c06609513</cites><orcidid>0000-0002-0325-6680 ; 0000-0003-3261-4501 ; 0000-0002-4490-9027 ; 0000-0002-1723-7536 ; 0000-0002-3078-0824</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9311155$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9311155$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-03135739$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dridi, Aicha</creatorcontrib><creatorcontrib>Boucetta, Cherifa</creatorcontrib><creatorcontrib>Hammami, Seif Eddine</creatorcontrib><creatorcontrib>Afifi, Hossam</creatorcontrib><creatorcontrib>Moungla, Hassine</creatorcontrib><title>STAD: Spatio-Temporal Anomaly Detection Mechanism for Mobile Network Management</title><title>IEEE eTransactions on network and service management</title><addtitle>T-NSM</addtitle><description>Unusual Spatio-Temporal fluctuations in cellular network traffic may lead to drastic network management misbehaviors and at least abnormal drops in quality of experience. It is also expected that the management of future cellular networks will mostly rely on machine learning and automation. In this article, we present a dynamic on-line data mining technique to detect these network anomalies allowing, network operators to pro-actively monitor and control a variety of real-world phenomena with less damage to the overall experience. To overcome the network performance degradation that can occur in real time, the network manager must imperatively and instantly identify abnormalities and hence provide a better continuous quality of service for the subscribers. Based on real cellular communication traces, we propose an automated framework, called STAD, ensuring spatio-temporal detection outliers using a combination of machine learning techniques including One-class SVM (OCSVM), Support Vector Regression (SVR) and recurrent neural networks, Long Short-Term Memory (LSTM). STAD is double checked with two real datasets of CDRs where results show high accuracy compared to the Isolation Forest and Auto-Regressive Integrated Moving Average (ARIMA) models.</description><subject>Abnormalities</subject><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>Automation</subject><subject>Autoregressive models</subject><subject>Biological system modeling</subject><subject>CDR</subject><subject>Cellular communication</subject><subject>Cellular networks</subject><subject>Communications traffic</subject><subject>Computer Science</subject><subject>Data analysis</subject><subject>Data mining</subject><subject>Data models</subject><subject>Fault detection</subject><subject>Hidden Markov models</subject><subject>isolation forest</subject><subject>long short term memory LSTM</subject><subject>Machine learning</subject><subject>network management</subject><subject>network outliers</subject><subject>OCSVM</subject><subject>Outliers (statistics)</subject><subject>Performance degradation</subject><subject>pro-active management</subject><subject>Recurrent neural networks</subject><subject>Statistical analysis</subject><subject>Support vector machines</subject><subject>SVR</subject><issn>1932-4537</issn><issn>1932-4537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFOwkAQhhujiYg-gPHSxJOH4sxOt2W9EVAxoXAAz5ulTKXYdnFbNLy9NBjiaSYz3z-ZfJ53i9BDBPW4mM6TngABPYKwj4RnXgcViSCUFJ__6y-9q7reAMg-KtHxZvPFYPTkz7emyW2w4HJrnSn8QWVLU-z9ETecHjaVn3C6NlVel35mnZ_YZV6wP-Xmx7pPPzGV-eCSq-bau8hMUfPNX-167y_Pi-E4mMxe34aDSZCSiJuAsn5shJDLFYeKjAmNAkkCQSgUkkFmUUgKeRWvlqsoY4BsaVjFKUQRKInU9R6Od9em0FuXl8bttTW5Hg8mup0BIcmY1HfL3h_ZrbNfO64bvbE7Vx3e00ICkqBQRgcKj1TqbF07zk5nEXTrWLeOdetY_zk-ZO6OmZyZT7wiRJSSfgH3VXWN</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Dridi, Aicha</creator><creator>Boucetta, Cherifa</creator><creator>Hammami, Seif Eddine</creator><creator>Afifi, Hossam</creator><creator>Moungla, Hassine</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0325-6680</orcidid><orcidid>https://orcid.org/0000-0003-3261-4501</orcidid><orcidid>https://orcid.org/0000-0002-4490-9027</orcidid><orcidid>https://orcid.org/0000-0002-1723-7536</orcidid><orcidid>https://orcid.org/0000-0002-3078-0824</orcidid></search><sort><creationdate>202103</creationdate><title>STAD: Spatio-Temporal Anomaly Detection Mechanism for Mobile Network Management</title><author>Dridi, Aicha ; Boucetta, Cherifa ; Hammami, Seif Eddine ; Afifi, Hossam ; Moungla, Hassine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-3f87a225bde493aa4a905321029125e05f64391ed7dbd6fe00fbae97c06609513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abnormalities</topic><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>Automation</topic><topic>Autoregressive models</topic><topic>Biological system modeling</topic><topic>CDR</topic><topic>Cellular communication</topic><topic>Cellular networks</topic><topic>Communications traffic</topic><topic>Computer Science</topic><topic>Data analysis</topic><topic>Data mining</topic><topic>Data models</topic><topic>Fault detection</topic><topic>Hidden Markov models</topic><topic>isolation forest</topic><topic>long short term memory LSTM</topic><topic>Machine learning</topic><topic>network management</topic><topic>network outliers</topic><topic>OCSVM</topic><topic>Outliers (statistics)</topic><topic>Performance degradation</topic><topic>pro-active management</topic><topic>Recurrent neural networks</topic><topic>Statistical analysis</topic><topic>Support vector machines</topic><topic>SVR</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dridi, Aicha</creatorcontrib><creatorcontrib>Boucetta, Cherifa</creatorcontrib><creatorcontrib>Hammami, Seif Eddine</creatorcontrib><creatorcontrib>Afifi, Hossam</creatorcontrib><creatorcontrib>Moungla, Hassine</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE eTransactions on network and service management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dridi, Aicha</au><au>Boucetta, Cherifa</au><au>Hammami, Seif Eddine</au><au>Afifi, Hossam</au><au>Moungla, Hassine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>STAD: Spatio-Temporal Anomaly Detection Mechanism for Mobile Network Management</atitle><jtitle>IEEE eTransactions on network and service management</jtitle><stitle>T-NSM</stitle><date>2021-03</date><risdate>2021</risdate><volume>18</volume><issue>1</issue><spage>894</spage><epage>906</epage><pages>894-906</pages><issn>1932-4537</issn><eissn>1932-4537</eissn><coden>ITNSC4</coden><abstract>Unusual Spatio-Temporal fluctuations in cellular network traffic may lead to drastic network management misbehaviors and at least abnormal drops in quality of experience. It is also expected that the management of future cellular networks will mostly rely on machine learning and automation. In this article, we present a dynamic on-line data mining technique to detect these network anomalies allowing, network operators to pro-actively monitor and control a variety of real-world phenomena with less damage to the overall experience. To overcome the network performance degradation that can occur in real time, the network manager must imperatively and instantly identify abnormalities and hence provide a better continuous quality of service for the subscribers. Based on real cellular communication traces, we propose an automated framework, called STAD, ensuring spatio-temporal detection outliers using a combination of machine learning techniques including One-class SVM (OCSVM), Support Vector Regression (SVR) and recurrent neural networks, Long Short-Term Memory (LSTM). STAD is double checked with two real datasets of CDRs where results show high accuracy compared to the Isolation Forest and Auto-Regressive Integrated Moving Average (ARIMA) models.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNSM.2020.3048131</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0325-6680</orcidid><orcidid>https://orcid.org/0000-0003-3261-4501</orcidid><orcidid>https://orcid.org/0000-0002-4490-9027</orcidid><orcidid>https://orcid.org/0000-0002-1723-7536</orcidid><orcidid>https://orcid.org/0000-0002-3078-0824</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4537
ispartof IEEE eTransactions on network and service management, 2021-03, Vol.18 (1), p.894-906
issn 1932-4537
1932-4537
language eng
recordid cdi_crossref_primary_10_1109_TNSM_2020_3048131
source IEEE Electronic Library (IEL)
subjects Abnormalities
Anomalies
Anomaly detection
Automation
Autoregressive models
Biological system modeling
CDR
Cellular communication
Cellular networks
Communications traffic
Computer Science
Data analysis
Data mining
Data models
Fault detection
Hidden Markov models
isolation forest
long short term memory LSTM
Machine learning
network management
network outliers
OCSVM
Outliers (statistics)
Performance degradation
pro-active management
Recurrent neural networks
Statistical analysis
Support vector machines
SVR
title STAD: Spatio-Temporal Anomaly Detection Mechanism for Mobile Network Management
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A44%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=STAD:%20Spatio-Temporal%20Anomaly%20Detection%20Mechanism%20for%20Mobile%20Network%20Management&rft.jtitle=IEEE%20eTransactions%20on%20network%20and%20service%20management&rft.au=Dridi,%20Aicha&rft.date=2021-03&rft.volume=18&rft.issue=1&rft.spage=894&rft.epage=906&rft.pages=894-906&rft.issn=1932-4537&rft.eissn=1932-4537&rft.coden=ITNSC4&rft_id=info:doi/10.1109/TNSM.2020.3048131&rft_dat=%3Cproquest_RIE%3E2501323456%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501323456&rft_id=info:pmid/&rft_ieee_id=9311155&rfr_iscdi=true