Correction to "Vertex Entropy as a Critical Node Measure in Network Monitoring"

From Definition 2 in the above-named work, we have for a simple graph G=(V,E) , the following expression for the chromatic entropy I_{C}(G) of a graph: \begin{equation*} I_{C}\left ({G}\right) = \min _{\left \{{C_{i}}\right \}} - \sum _{i=1}^{N_{c}} \frac {|C_{i}|}{n} \log _{2} \frac {|C_{i}|}{n}...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE eTransactions on network and service management 2017-12, Vol.14 (4), p.1185-1185
Hauptverfasser: Tee, Philip, Parisis, George, Wakeman, Ian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1185
container_issue 4
container_start_page 1185
container_title IEEE eTransactions on network and service management
container_volume 14
creator Tee, Philip
Parisis, George
Wakeman, Ian
description From Definition 2 in the above-named work, we have for a simple graph G=(V,E) , the following expression for the chromatic entropy I_{C}(G) of a graph: \begin{equation*} I_{C}\left ({G}\right) = \min _{\left \{{C_{i}}\right \}} - \sum _{i=1}^{N_{c}} \frac {|C_{i}|}{n} \log _{2} \frac {|C_{i}|}{n} \tag{1}\end{equation*}
doi_str_mv 10.1109/TNSM.2017.2774978
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNSM_2017_2774978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8171282</ieee_id><sourcerecordid>10_1109_TNSM_2017_2774978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c622-f32db25ea846a4d41a20a43c41cba51d732c5682734357634703197c5a80984b3</originalsourceid><addsrcrecordid>eNpNkM1KAzEYRYMoWKsPIG5C91PzfUkmmaUM9Qf6s3BwO2QyqUTrpCQR7dtraRFX9y7uuYtDyDWwKQCrbpvl82KKDNQUlRKV0idkBBXHQkiuTv_1c3KR0htjUkOFI7KqQ4zOZh8GmgOdvLiY3TedDTmG7Y6aRA2to8_emg1dht7RhTPpMzrqB7p0-SvEd7oIg88h-uF1cknO1maT3NUxx6S5nzX1YzFfPTzVd_PClojFmmPfoXRGi9KIXoBBZgS3AmxnJPSKo5WlRsUFl6rkQjEOlbLSaFZp0fExgcOtjSGl6NbtNvoPE3ctsHYvpN0LafdC2qOQX-bmwHjn3N9egwLUyH8ARhpbKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Correction to "Vertex Entropy as a Critical Node Measure in Network Monitoring"</title><source>IEEE Electronic Library (IEL)</source><creator>Tee, Philip ; Parisis, George ; Wakeman, Ian</creator><creatorcontrib>Tee, Philip ; Parisis, George ; Wakeman, Ian</creatorcontrib><description><![CDATA[From Definition 2 in the above-named work, we have for a simple graph <inline-formula> <tex-math notation="LaTeX">G=(V,E) </tex-math></inline-formula>, the following expression for the chromatic entropy <inline-formula> <tex-math notation="LaTeX">I_{C}(G) </tex-math></inline-formula> of a graph:<disp-formula id="deqn1a"> <tex-math notation="LaTeX">\begin{equation*} I_{C}\left ({G}\right) = \min _{\left \{{C_{i}}\right \}} - \sum _{i=1}^{N_{c}} \frac {|C_{i}|}{n} \log _{2} \frac {|C_{i}|}{n} \tag{1}\end{equation*} </tex-math></disp-formula>]]></description><identifier>ISSN: 1932-4537</identifier><identifier>EISSN: 1932-4537</identifier><identifier>DOI: 10.1109/TNSM.2017.2774978</identifier><identifier>CODEN: ITNSC4</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Boundary conditions ; Entropy ; Informatics ; Monitoring</subject><ispartof>IEEE eTransactions on network and service management, 2017-12, Vol.14 (4), p.1185-1185</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c622-f32db25ea846a4d41a20a43c41cba51d732c5682734357634703197c5a80984b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8171282$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27931,27932,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8171282$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tee, Philip</creatorcontrib><creatorcontrib>Parisis, George</creatorcontrib><creatorcontrib>Wakeman, Ian</creatorcontrib><title>Correction to "Vertex Entropy as a Critical Node Measure in Network Monitoring"</title><title>IEEE eTransactions on network and service management</title><addtitle>T-NSM</addtitle><description><![CDATA[From Definition 2 in the above-named work, we have for a simple graph <inline-formula> <tex-math notation="LaTeX">G=(V,E) </tex-math></inline-formula>, the following expression for the chromatic entropy <inline-formula> <tex-math notation="LaTeX">I_{C}(G) </tex-math></inline-formula> of a graph:<disp-formula id="deqn1a"> <tex-math notation="LaTeX">\begin{equation*} I_{C}\left ({G}\right) = \min _{\left \{{C_{i}}\right \}} - \sum _{i=1}^{N_{c}} \frac {|C_{i}|}{n} \log _{2} \frac {|C_{i}|}{n} \tag{1}\end{equation*} </tex-math></disp-formula>]]></description><subject>Artificial neural networks</subject><subject>Boundary conditions</subject><subject>Entropy</subject><subject>Informatics</subject><subject>Monitoring</subject><issn>1932-4537</issn><issn>1932-4537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1KAzEYRYMoWKsPIG5C91PzfUkmmaUM9Qf6s3BwO2QyqUTrpCQR7dtraRFX9y7uuYtDyDWwKQCrbpvl82KKDNQUlRKV0idkBBXHQkiuTv_1c3KR0htjUkOFI7KqQ4zOZh8GmgOdvLiY3TedDTmG7Y6aRA2to8_emg1dht7RhTPpMzrqB7p0-SvEd7oIg88h-uF1cknO1maT3NUxx6S5nzX1YzFfPTzVd_PClojFmmPfoXRGi9KIXoBBZgS3AmxnJPSKo5WlRsUFl6rkQjEOlbLSaFZp0fExgcOtjSGl6NbtNvoPE3ctsHYvpN0LafdC2qOQX-bmwHjn3N9egwLUyH8ARhpbKQ</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Tee, Philip</creator><creator>Parisis, George</creator><creator>Wakeman, Ian</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201712</creationdate><title>Correction to "Vertex Entropy as a Critical Node Measure in Network Monitoring"</title><author>Tee, Philip ; Parisis, George ; Wakeman, Ian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c622-f32db25ea846a4d41a20a43c41cba51d732c5682734357634703197c5a80984b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial neural networks</topic><topic>Boundary conditions</topic><topic>Entropy</topic><topic>Informatics</topic><topic>Monitoring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tee, Philip</creatorcontrib><creatorcontrib>Parisis, George</creatorcontrib><creatorcontrib>Wakeman, Ian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE eTransactions on network and service management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tee, Philip</au><au>Parisis, George</au><au>Wakeman, Ian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correction to "Vertex Entropy as a Critical Node Measure in Network Monitoring"</atitle><jtitle>IEEE eTransactions on network and service management</jtitle><stitle>T-NSM</stitle><date>2017-12</date><risdate>2017</risdate><volume>14</volume><issue>4</issue><spage>1185</spage><epage>1185</epage><pages>1185-1185</pages><issn>1932-4537</issn><eissn>1932-4537</eissn><coden>ITNSC4</coden><abstract><![CDATA[From Definition 2 in the above-named work, we have for a simple graph <inline-formula> <tex-math notation="LaTeX">G=(V,E) </tex-math></inline-formula>, the following expression for the chromatic entropy <inline-formula> <tex-math notation="LaTeX">I_{C}(G) </tex-math></inline-formula> of a graph:<disp-formula id="deqn1a"> <tex-math notation="LaTeX">\begin{equation*} I_{C}\left ({G}\right) = \min _{\left \{{C_{i}}\right \}} - \sum _{i=1}^{N_{c}} \frac {|C_{i}|}{n} \log _{2} \frac {|C_{i}|}{n} \tag{1}\end{equation*} </tex-math></disp-formula>]]></abstract><pub>IEEE</pub><doi>10.1109/TNSM.2017.2774978</doi><tpages>1</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4537
ispartof IEEE eTransactions on network and service management, 2017-12, Vol.14 (4), p.1185-1185
issn 1932-4537
1932-4537
language eng
recordid cdi_crossref_primary_10_1109_TNSM_2017_2774978
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Boundary conditions
Entropy
Informatics
Monitoring
title Correction to "Vertex Entropy as a Critical Node Measure in Network Monitoring"
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-07T03%3A12%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correction%20to%20%22Vertex%20Entropy%20as%20a%20Critical%20Node%20Measure%20in%20Network%20Monitoring%22&rft.jtitle=IEEE%20eTransactions%20on%20network%20and%20service%20management&rft.au=Tee,%20Philip&rft.date=2017-12&rft.volume=14&rft.issue=4&rft.spage=1185&rft.epage=1185&rft.pages=1185-1185&rft.issn=1932-4537&rft.eissn=1932-4537&rft.coden=ITNSC4&rft_id=info:doi/10.1109/TNSM.2017.2774978&rft_dat=%3Ccrossref_RIE%3E10_1109_TNSM_2017_2774978%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8171282&rfr_iscdi=true