Spatial Task Assignment Based on Information Gain in Crowdsourcing

Spatial crowdsourcing provides workers for performing cooperative tasks considering their locations, and is drawing much attention with the rapid development of mobile Internet. The key techniques in spatial crowdsourcing include worker-mobitlity-based task matching for more information gain and eff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on network science and engineering 2020-01, Vol.7 (1), p.139-152
Hauptverfasser: Tang, Feilong, Zhang, Heteng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 152
container_issue 1
container_start_page 139
container_title IEEE transactions on network science and engineering
container_volume 7
creator Tang, Feilong
Zhang, Heteng
description Spatial crowdsourcing provides workers for performing cooperative tasks considering their locations, and is drawing much attention with the rapid development of mobile Internet. The key techniques in spatial crowdsourcing include worker-mobitlity-based task matching for more information gain and efficient cooperation among coworkers. In this paper, we first propose information gain based maximum task matching problem, where each spatial task needs to be performed before its expiration time and workers are moving dynamically. We then prove it is a NP-hard problem. Next, we propose two approximation algorithms: greedy and extremum algorithms. In order to improve the time efficiency and the task assignment accuracy, we further propose an optimization approach. Subsequently, for complex spatial tasks, we propose a feedback-based cooperation mechanism, model the worker affinity and the matching degree between a task and a group of coworkers, and design a feedback-based assignment algorithm with group affinity. We conducted extensive experiments on both real-world and synthetic datasets. The results demonstrate that our approach outperforms related schemes.
doi_str_mv 10.1109/TNSE.2019.2891635
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNSE_2019_2891635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8614430</ieee_id><sourcerecordid>2374709493</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-4c30009bff8b412bd8375d3f6313b08267c0a167aa4c01e6d447161c3fc4576e3</originalsourceid><addsrcrecordid>eNo9kEFLAzEQhYMoWLQ_QLwseN6ayaTJ5tiWWgtFD63gLWSz2bK1zdZki_jvzdIiDMw7fG_e8Ah5ADoCoOp587aejxgFNWKFAoHjKzJgiDxHpj6ve81kzoWSt2QY445SCqwQiDgg0_XRdI3ZZxsTv7JJjM3WH5zvsqmJrspany193YZDgpJemMZnaWah_aliewq28dt7clObfXTDy74jHy_zzew1X70vlrPJKrdMYZdziylYlXVdlBxYWRUoxxXWAgFLWjAhLTUgpDHcUnCi4lyCAIu15WMpHN6Rp_PdY2i_Ty52epc-8ClSM5RcUsUVJgrOlA1tjMHV-hiagwm_Gqju29J9W7pvS1_aSp7Hs6dxzv3zhQDOkeIf5MxkPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2374709493</pqid></control><display><type>article</type><title>Spatial Task Assignment Based on Information Gain in Crowdsourcing</title><source>IEEE Electronic Library (IEL)</source><creator>Tang, Feilong ; Zhang, Heteng</creator><creatorcontrib>Tang, Feilong ; Zhang, Heteng</creatorcontrib><description>Spatial crowdsourcing provides workers for performing cooperative tasks considering their locations, and is drawing much attention with the rapid development of mobile Internet. The key techniques in spatial crowdsourcing include worker-mobitlity-based task matching for more information gain and efficient cooperation among coworkers. In this paper, we first propose information gain based maximum task matching problem, where each spatial task needs to be performed before its expiration time and workers are moving dynamically. We then prove it is a NP-hard problem. Next, we propose two approximation algorithms: greedy and extremum algorithms. In order to improve the time efficiency and the task assignment accuracy, we further propose an optimization approach. Subsequently, for complex spatial tasks, we propose a feedback-based cooperation mechanism, model the worker affinity and the matching degree between a task and a group of coworkers, and design a feedback-based assignment algorithm with group affinity. We conducted extensive experiments on both real-world and synthetic datasets. The results demonstrate that our approach outperforms related schemes.</description><identifier>ISSN: 2327-4697</identifier><identifier>EISSN: 2334-329X</identifier><identifier>DOI: 10.1109/TNSE.2019.2891635</identifier><identifier>CODEN: ITNSD5</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Affinity ; Algorithms ; Approximation algorithms ; Cooperation ; Crowdsourcing ; Feedback ; feedback-based cooperation ; Greedy algorithms ; Heuristic algorithms ; Matching ; Optimization ; Real-time systems ; Servers ; spatial crowdsourcing ; Spatial task assignment ; Task analysis ; Task complexity ; worker affinity</subject><ispartof>IEEE transactions on network science and engineering, 2020-01, Vol.7 (1), p.139-152</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-4c30009bff8b412bd8375d3f6313b08267c0a167aa4c01e6d447161c3fc4576e3</citedby><cites>FETCH-LOGICAL-c293t-4c30009bff8b412bd8375d3f6313b08267c0a167aa4c01e6d447161c3fc4576e3</cites><orcidid>0000-0002-1384-198X ; 0000-0002-4602-3836</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8614430$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8614430$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tang, Feilong</creatorcontrib><creatorcontrib>Zhang, Heteng</creatorcontrib><title>Spatial Task Assignment Based on Information Gain in Crowdsourcing</title><title>IEEE transactions on network science and engineering</title><addtitle>TNSE</addtitle><description>Spatial crowdsourcing provides workers for performing cooperative tasks considering their locations, and is drawing much attention with the rapid development of mobile Internet. The key techniques in spatial crowdsourcing include worker-mobitlity-based task matching for more information gain and efficient cooperation among coworkers. In this paper, we first propose information gain based maximum task matching problem, where each spatial task needs to be performed before its expiration time and workers are moving dynamically. We then prove it is a NP-hard problem. Next, we propose two approximation algorithms: greedy and extremum algorithms. In order to improve the time efficiency and the task assignment accuracy, we further propose an optimization approach. Subsequently, for complex spatial tasks, we propose a feedback-based cooperation mechanism, model the worker affinity and the matching degree between a task and a group of coworkers, and design a feedback-based assignment algorithm with group affinity. We conducted extensive experiments on both real-world and synthetic datasets. The results demonstrate that our approach outperforms related schemes.</description><subject>Affinity</subject><subject>Algorithms</subject><subject>Approximation algorithms</subject><subject>Cooperation</subject><subject>Crowdsourcing</subject><subject>Feedback</subject><subject>feedback-based cooperation</subject><subject>Greedy algorithms</subject><subject>Heuristic algorithms</subject><subject>Matching</subject><subject>Optimization</subject><subject>Real-time systems</subject><subject>Servers</subject><subject>spatial crowdsourcing</subject><subject>Spatial task assignment</subject><subject>Task analysis</subject><subject>Task complexity</subject><subject>worker affinity</subject><issn>2327-4697</issn><issn>2334-329X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEQhYMoWLQ_QLwseN6ayaTJ5tiWWgtFD63gLWSz2bK1zdZki_jvzdIiDMw7fG_e8Ah5ADoCoOp587aejxgFNWKFAoHjKzJgiDxHpj6ve81kzoWSt2QY445SCqwQiDgg0_XRdI3ZZxsTv7JJjM3WH5zvsqmJrspany193YZDgpJemMZnaWah_aliewq28dt7clObfXTDy74jHy_zzew1X70vlrPJKrdMYZdziylYlXVdlBxYWRUoxxXWAgFLWjAhLTUgpDHcUnCi4lyCAIu15WMpHN6Rp_PdY2i_Ty52epc-8ClSM5RcUsUVJgrOlA1tjMHV-hiagwm_Gqju29J9W7pvS1_aSp7Hs6dxzv3zhQDOkeIf5MxkPQ</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Tang, Feilong</creator><creator>Zhang, Heteng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1384-198X</orcidid><orcidid>https://orcid.org/0000-0002-4602-3836</orcidid></search><sort><creationdate>202001</creationdate><title>Spatial Task Assignment Based on Information Gain in Crowdsourcing</title><author>Tang, Feilong ; Zhang, Heteng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-4c30009bff8b412bd8375d3f6313b08267c0a167aa4c01e6d447161c3fc4576e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Affinity</topic><topic>Algorithms</topic><topic>Approximation algorithms</topic><topic>Cooperation</topic><topic>Crowdsourcing</topic><topic>Feedback</topic><topic>feedback-based cooperation</topic><topic>Greedy algorithms</topic><topic>Heuristic algorithms</topic><topic>Matching</topic><topic>Optimization</topic><topic>Real-time systems</topic><topic>Servers</topic><topic>spatial crowdsourcing</topic><topic>Spatial task assignment</topic><topic>Task analysis</topic><topic>Task complexity</topic><topic>worker affinity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Feilong</creatorcontrib><creatorcontrib>Zhang, Heteng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on network science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tang, Feilong</au><au>Zhang, Heteng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial Task Assignment Based on Information Gain in Crowdsourcing</atitle><jtitle>IEEE transactions on network science and engineering</jtitle><stitle>TNSE</stitle><date>2020-01</date><risdate>2020</risdate><volume>7</volume><issue>1</issue><spage>139</spage><epage>152</epage><pages>139-152</pages><issn>2327-4697</issn><eissn>2334-329X</eissn><coden>ITNSD5</coden><abstract>Spatial crowdsourcing provides workers for performing cooperative tasks considering their locations, and is drawing much attention with the rapid development of mobile Internet. The key techniques in spatial crowdsourcing include worker-mobitlity-based task matching for more information gain and efficient cooperation among coworkers. In this paper, we first propose information gain based maximum task matching problem, where each spatial task needs to be performed before its expiration time and workers are moving dynamically. We then prove it is a NP-hard problem. Next, we propose two approximation algorithms: greedy and extremum algorithms. In order to improve the time efficiency and the task assignment accuracy, we further propose an optimization approach. Subsequently, for complex spatial tasks, we propose a feedback-based cooperation mechanism, model the worker affinity and the matching degree between a task and a group of coworkers, and design a feedback-based assignment algorithm with group affinity. We conducted extensive experiments on both real-world and synthetic datasets. The results demonstrate that our approach outperforms related schemes.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TNSE.2019.2891635</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1384-198X</orcidid><orcidid>https://orcid.org/0000-0002-4602-3836</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4697
ispartof IEEE transactions on network science and engineering, 2020-01, Vol.7 (1), p.139-152
issn 2327-4697
2334-329X
language eng
recordid cdi_crossref_primary_10_1109_TNSE_2019_2891635
source IEEE Electronic Library (IEL)
subjects Affinity
Algorithms
Approximation algorithms
Cooperation
Crowdsourcing
Feedback
feedback-based cooperation
Greedy algorithms
Heuristic algorithms
Matching
Optimization
Real-time systems
Servers
spatial crowdsourcing
Spatial task assignment
Task analysis
Task complexity
worker affinity
title Spatial Task Assignment Based on Information Gain in Crowdsourcing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A43%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20Task%20Assignment%20Based%20on%20Information%20Gain%20in%20Crowdsourcing&rft.jtitle=IEEE%20transactions%20on%20network%20science%20and%20engineering&rft.au=Tang,%20Feilong&rft.date=2020-01&rft.volume=7&rft.issue=1&rft.spage=139&rft.epage=152&rft.pages=139-152&rft.issn=2327-4697&rft.eissn=2334-329X&rft.coden=ITNSD5&rft_id=info:doi/10.1109/TNSE.2019.2891635&rft_dat=%3Cproquest_RIE%3E2374709493%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2374709493&rft_id=info:pmid/&rft_ieee_id=8614430&rfr_iscdi=true