Spatial Task Assignment Based on Information Gain in Crowdsourcing
Spatial crowdsourcing provides workers for performing cooperative tasks considering their locations, and is drawing much attention with the rapid development of mobile Internet. The key techniques in spatial crowdsourcing include worker-mobitlity-based task matching for more information gain and eff...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on network science and engineering 2020-01, Vol.7 (1), p.139-152 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 152 |
---|---|
container_issue | 1 |
container_start_page | 139 |
container_title | IEEE transactions on network science and engineering |
container_volume | 7 |
creator | Tang, Feilong Zhang, Heteng |
description | Spatial crowdsourcing provides workers for performing cooperative tasks considering their locations, and is drawing much attention with the rapid development of mobile Internet. The key techniques in spatial crowdsourcing include worker-mobitlity-based task matching for more information gain and efficient cooperation among coworkers. In this paper, we first propose information gain based maximum task matching problem, where each spatial task needs to be performed before its expiration time and workers are moving dynamically. We then prove it is a NP-hard problem. Next, we propose two approximation algorithms: greedy and extremum algorithms. In order to improve the time efficiency and the task assignment accuracy, we further propose an optimization approach. Subsequently, for complex spatial tasks, we propose a feedback-based cooperation mechanism, model the worker affinity and the matching degree between a task and a group of coworkers, and design a feedback-based assignment algorithm with group affinity. We conducted extensive experiments on both real-world and synthetic datasets. The results demonstrate that our approach outperforms related schemes. |
doi_str_mv | 10.1109/TNSE.2019.2891635 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNSE_2019_2891635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8614430</ieee_id><sourcerecordid>2374709493</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-4c30009bff8b412bd8375d3f6313b08267c0a167aa4c01e6d447161c3fc4576e3</originalsourceid><addsrcrecordid>eNo9kEFLAzEQhYMoWLQ_QLwseN6ayaTJ5tiWWgtFD63gLWSz2bK1zdZki_jvzdIiDMw7fG_e8Ah5ADoCoOp587aejxgFNWKFAoHjKzJgiDxHpj6ve81kzoWSt2QY445SCqwQiDgg0_XRdI3ZZxsTv7JJjM3WH5zvsqmJrspany193YZDgpJemMZnaWah_aliewq28dt7clObfXTDy74jHy_zzew1X70vlrPJKrdMYZdziylYlXVdlBxYWRUoxxXWAgFLWjAhLTUgpDHcUnCi4lyCAIu15WMpHN6Rp_PdY2i_Ty52epc-8ClSM5RcUsUVJgrOlA1tjMHV-hiagwm_Gqju29J9W7pvS1_aSp7Hs6dxzv3zhQDOkeIf5MxkPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2374709493</pqid></control><display><type>article</type><title>Spatial Task Assignment Based on Information Gain in Crowdsourcing</title><source>IEEE Electronic Library (IEL)</source><creator>Tang, Feilong ; Zhang, Heteng</creator><creatorcontrib>Tang, Feilong ; Zhang, Heteng</creatorcontrib><description>Spatial crowdsourcing provides workers for performing cooperative tasks considering their locations, and is drawing much attention with the rapid development of mobile Internet. The key techniques in spatial crowdsourcing include worker-mobitlity-based task matching for more information gain and efficient cooperation among coworkers. In this paper, we first propose information gain based maximum task matching problem, where each spatial task needs to be performed before its expiration time and workers are moving dynamically. We then prove it is a NP-hard problem. Next, we propose two approximation algorithms: greedy and extremum algorithms. In order to improve the time efficiency and the task assignment accuracy, we further propose an optimization approach. Subsequently, for complex spatial tasks, we propose a feedback-based cooperation mechanism, model the worker affinity and the matching degree between a task and a group of coworkers, and design a feedback-based assignment algorithm with group affinity. We conducted extensive experiments on both real-world and synthetic datasets. The results demonstrate that our approach outperforms related schemes.</description><identifier>ISSN: 2327-4697</identifier><identifier>EISSN: 2334-329X</identifier><identifier>DOI: 10.1109/TNSE.2019.2891635</identifier><identifier>CODEN: ITNSD5</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Affinity ; Algorithms ; Approximation algorithms ; Cooperation ; Crowdsourcing ; Feedback ; feedback-based cooperation ; Greedy algorithms ; Heuristic algorithms ; Matching ; Optimization ; Real-time systems ; Servers ; spatial crowdsourcing ; Spatial task assignment ; Task analysis ; Task complexity ; worker affinity</subject><ispartof>IEEE transactions on network science and engineering, 2020-01, Vol.7 (1), p.139-152</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-4c30009bff8b412bd8375d3f6313b08267c0a167aa4c01e6d447161c3fc4576e3</citedby><cites>FETCH-LOGICAL-c293t-4c30009bff8b412bd8375d3f6313b08267c0a167aa4c01e6d447161c3fc4576e3</cites><orcidid>0000-0002-1384-198X ; 0000-0002-4602-3836</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8614430$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8614430$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tang, Feilong</creatorcontrib><creatorcontrib>Zhang, Heteng</creatorcontrib><title>Spatial Task Assignment Based on Information Gain in Crowdsourcing</title><title>IEEE transactions on network science and engineering</title><addtitle>TNSE</addtitle><description>Spatial crowdsourcing provides workers for performing cooperative tasks considering their locations, and is drawing much attention with the rapid development of mobile Internet. The key techniques in spatial crowdsourcing include worker-mobitlity-based task matching for more information gain and efficient cooperation among coworkers. In this paper, we first propose information gain based maximum task matching problem, where each spatial task needs to be performed before its expiration time and workers are moving dynamically. We then prove it is a NP-hard problem. Next, we propose two approximation algorithms: greedy and extremum algorithms. In order to improve the time efficiency and the task assignment accuracy, we further propose an optimization approach. Subsequently, for complex spatial tasks, we propose a feedback-based cooperation mechanism, model the worker affinity and the matching degree between a task and a group of coworkers, and design a feedback-based assignment algorithm with group affinity. We conducted extensive experiments on both real-world and synthetic datasets. The results demonstrate that our approach outperforms related schemes.</description><subject>Affinity</subject><subject>Algorithms</subject><subject>Approximation algorithms</subject><subject>Cooperation</subject><subject>Crowdsourcing</subject><subject>Feedback</subject><subject>feedback-based cooperation</subject><subject>Greedy algorithms</subject><subject>Heuristic algorithms</subject><subject>Matching</subject><subject>Optimization</subject><subject>Real-time systems</subject><subject>Servers</subject><subject>spatial crowdsourcing</subject><subject>Spatial task assignment</subject><subject>Task analysis</subject><subject>Task complexity</subject><subject>worker affinity</subject><issn>2327-4697</issn><issn>2334-329X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEQhYMoWLQ_QLwseN6ayaTJ5tiWWgtFD63gLWSz2bK1zdZki_jvzdIiDMw7fG_e8Ah5ADoCoOp587aejxgFNWKFAoHjKzJgiDxHpj6ve81kzoWSt2QY445SCqwQiDgg0_XRdI3ZZxsTv7JJjM3WH5zvsqmJrspany193YZDgpJemMZnaWah_aliewq28dt7clObfXTDy74jHy_zzew1X70vlrPJKrdMYZdziylYlXVdlBxYWRUoxxXWAgFLWjAhLTUgpDHcUnCi4lyCAIu15WMpHN6Rp_PdY2i_Ty52epc-8ClSM5RcUsUVJgrOlA1tjMHV-hiagwm_Gqju29J9W7pvS1_aSp7Hs6dxzv3zhQDOkeIf5MxkPQ</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Tang, Feilong</creator><creator>Zhang, Heteng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1384-198X</orcidid><orcidid>https://orcid.org/0000-0002-4602-3836</orcidid></search><sort><creationdate>202001</creationdate><title>Spatial Task Assignment Based on Information Gain in Crowdsourcing</title><author>Tang, Feilong ; Zhang, Heteng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-4c30009bff8b412bd8375d3f6313b08267c0a167aa4c01e6d447161c3fc4576e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Affinity</topic><topic>Algorithms</topic><topic>Approximation algorithms</topic><topic>Cooperation</topic><topic>Crowdsourcing</topic><topic>Feedback</topic><topic>feedback-based cooperation</topic><topic>Greedy algorithms</topic><topic>Heuristic algorithms</topic><topic>Matching</topic><topic>Optimization</topic><topic>Real-time systems</topic><topic>Servers</topic><topic>spatial crowdsourcing</topic><topic>Spatial task assignment</topic><topic>Task analysis</topic><topic>Task complexity</topic><topic>worker affinity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Feilong</creatorcontrib><creatorcontrib>Zhang, Heteng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on network science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tang, Feilong</au><au>Zhang, Heteng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial Task Assignment Based on Information Gain in Crowdsourcing</atitle><jtitle>IEEE transactions on network science and engineering</jtitle><stitle>TNSE</stitle><date>2020-01</date><risdate>2020</risdate><volume>7</volume><issue>1</issue><spage>139</spage><epage>152</epage><pages>139-152</pages><issn>2327-4697</issn><eissn>2334-329X</eissn><coden>ITNSD5</coden><abstract>Spatial crowdsourcing provides workers for performing cooperative tasks considering their locations, and is drawing much attention with the rapid development of mobile Internet. The key techniques in spatial crowdsourcing include worker-mobitlity-based task matching for more information gain and efficient cooperation among coworkers. In this paper, we first propose information gain based maximum task matching problem, where each spatial task needs to be performed before its expiration time and workers are moving dynamically. We then prove it is a NP-hard problem. Next, we propose two approximation algorithms: greedy and extremum algorithms. In order to improve the time efficiency and the task assignment accuracy, we further propose an optimization approach. Subsequently, for complex spatial tasks, we propose a feedback-based cooperation mechanism, model the worker affinity and the matching degree between a task and a group of coworkers, and design a feedback-based assignment algorithm with group affinity. We conducted extensive experiments on both real-world and synthetic datasets. The results demonstrate that our approach outperforms related schemes.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TNSE.2019.2891635</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1384-198X</orcidid><orcidid>https://orcid.org/0000-0002-4602-3836</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4697 |
ispartof | IEEE transactions on network science and engineering, 2020-01, Vol.7 (1), p.139-152 |
issn | 2327-4697 2334-329X |
language | eng |
recordid | cdi_crossref_primary_10_1109_TNSE_2019_2891635 |
source | IEEE Electronic Library (IEL) |
subjects | Affinity Algorithms Approximation algorithms Cooperation Crowdsourcing Feedback feedback-based cooperation Greedy algorithms Heuristic algorithms Matching Optimization Real-time systems Servers spatial crowdsourcing Spatial task assignment Task analysis Task complexity worker affinity |
title | Spatial Task Assignment Based on Information Gain in Crowdsourcing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A43%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20Task%20Assignment%20Based%20on%20Information%20Gain%20in%20Crowdsourcing&rft.jtitle=IEEE%20transactions%20on%20network%20science%20and%20engineering&rft.au=Tang,%20Feilong&rft.date=2020-01&rft.volume=7&rft.issue=1&rft.spage=139&rft.epage=152&rft.pages=139-152&rft.issn=2327-4697&rft.eissn=2334-329X&rft.coden=ITNSD5&rft_id=info:doi/10.1109/TNSE.2019.2891635&rft_dat=%3Cproquest_RIE%3E2374709493%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2374709493&rft_id=info:pmid/&rft_ieee_id=8614430&rfr_iscdi=true |