Multi-illuminant color reproduction for electronic cameras via CANFIS neuro-fuzzy modular network device characterization

We describe color reproduction and correction of images captured by electronic cameras under multiple illumination (or lighting) conditions, relating to color device characterization for enhancing the quality of color in the obtained images. In particular, we highlight a very practical use of neuro-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2002-07, Vol.13 (4), p.1009-1022
Hauptverfasser: Mizutani, E., Nishio, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1022
container_issue 4
container_start_page 1009
container_title IEEE transaction on neural networks and learning systems
container_volume 13
creator Mizutani, E.
Nishio, K.
description We describe color reproduction and correction of images captured by electronic cameras under multiple illumination (or lighting) conditions, relating to color device characterization for enhancing the quality of color in the obtained images. In particular, we highlight a very practical use of neuro-fuzzy modular network coactive neuro-fuzzy inference systems (CANFIS) models for this application, and discuss their strengths and weaknesses compared with other adaptive network models (e.g., multilayer perceptron (MLP)) as well as conventional lookup-table-type (TRC-matrix) methods. Our in-depth investigation based on comprehensive numerical tests with a wide variety of illumination/lighting data (180 sources of illumination) shows that the "neuro-fuzzy CANFIS with MLP local experts" possesses a remarkable generalization/approximation capacity, even under a very restricted condition where only four-illuminant data sets were permitted to be used for optimization because of efficient practical implementation subject to an industrial setting.
doi_str_mv 10.1109/TNN.2002.1021900
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNN_2002_1021900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1021900</ieee_id><sourcerecordid>963868111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-bd4b871b48a4fe22041ea89079e14a075804a829cf67ad0f36cd576dc2ca76463</originalsourceid><addsrcrecordid>eNqFks9rFDEUxwdRbK3eBUFCD3qa9SWTn8eyWC2068F6DtnMG0zNTGpmprL715t1F1o8tKcXHp_vB174VtVbCgtKwXy6Xq0WDIAtKDBqAJ5Vx9RwWgOY5nl5Axe1YUwdVa_G8QaAcgHyZXVENeOcG3Fcba7mOIU6xDj3YXDDRHyKKZOMtzm1s59CGkhXFhjRTzkNwRPvesxuJHfBkeXZ6vziOxlwzqnu5u12Q_qSiy6X3fQn5V-kxbvgkfifLjs_YQ5bt7O-rl50Lo745jBPqh_nn6-XX-vLb18ulmeXteeNmup1y9da0TXXjnfIGHCKThtQBil3oIQG7jQzvpPKtdA10rdCydYz75TksjmpPu695aDfM46T7cPoMUY3YJpHa2SjpaaUPkmqhjOu1T_nh0dJphvFheBPg4pRCUIU8PQ_8CbNeSgfYw0DLU1jdjbYQz6ncczY2dscepc3loLdFcKWQthdIeyhECXy_uCd1z2294FDAwrwbg8ERHzg28f_AmGjugg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920869394</pqid></control><display><type>article</type><title>Multi-illuminant color reproduction for electronic cameras via CANFIS neuro-fuzzy modular network device characterization</title><source>IEEE Electronic Library (IEL)</source><creator>Mizutani, E. ; Nishio, K.</creator><creatorcontrib>Mizutani, E. ; Nishio, K.</creatorcontrib><description>We describe color reproduction and correction of images captured by electronic cameras under multiple illumination (or lighting) conditions, relating to color device characterization for enhancing the quality of color in the obtained images. In particular, we highlight a very practical use of neuro-fuzzy modular network coactive neuro-fuzzy inference systems (CANFIS) models for this application, and discuss their strengths and weaknesses compared with other adaptive network models (e.g., multilayer perceptron (MLP)) as well as conventional lookup-table-type (TRC-matrix) methods. Our in-depth investigation based on comprehensive numerical tests with a wide variety of illumination/lighting data (180 sources of illumination) shows that the "neuro-fuzzy CANFIS with MLP local experts" possesses a remarkable generalization/approximation capacity, even under a very restricted condition where only four-illuminant data sets were permitted to be used for optimization because of efficient practical implementation subject to an industrial setting.</description><identifier>ISSN: 1045-9227</identifier><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 1941-0093</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNN.2002.1021900</identifier><identifier>PMID: 18244495</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptive systems ; Artificial neural networks ; Cameras ; Color ; Electronics ; Fuzzy logic ; Humans ; Illumination ; Image converters ; Layout ; Lighting ; Mathematical models ; Multilayer perceptrons ; Networks ; Printers ; Testing</subject><ispartof>IEEE transaction on neural networks and learning systems, 2002-07, Vol.13 (4), p.1009-1022</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-bd4b871b48a4fe22041ea89079e14a075804a829cf67ad0f36cd576dc2ca76463</citedby><cites>FETCH-LOGICAL-c437t-bd4b871b48a4fe22041ea89079e14a075804a829cf67ad0f36cd576dc2ca76463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1021900$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1021900$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18244495$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mizutani, E.</creatorcontrib><creatorcontrib>Nishio, K.</creatorcontrib><title>Multi-illuminant color reproduction for electronic cameras via CANFIS neuro-fuzzy modular network device characterization</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>We describe color reproduction and correction of images captured by electronic cameras under multiple illumination (or lighting) conditions, relating to color device characterization for enhancing the quality of color in the obtained images. In particular, we highlight a very practical use of neuro-fuzzy modular network coactive neuro-fuzzy inference systems (CANFIS) models for this application, and discuss their strengths and weaknesses compared with other adaptive network models (e.g., multilayer perceptron (MLP)) as well as conventional lookup-table-type (TRC-matrix) methods. Our in-depth investigation based on comprehensive numerical tests with a wide variety of illumination/lighting data (180 sources of illumination) shows that the "neuro-fuzzy CANFIS with MLP local experts" possesses a remarkable generalization/approximation capacity, even under a very restricted condition where only four-illuminant data sets were permitted to be used for optimization because of efficient practical implementation subject to an industrial setting.</description><subject>Adaptive systems</subject><subject>Artificial neural networks</subject><subject>Cameras</subject><subject>Color</subject><subject>Electronics</subject><subject>Fuzzy logic</subject><subject>Humans</subject><subject>Illumination</subject><subject>Image converters</subject><subject>Layout</subject><subject>Lighting</subject><subject>Mathematical models</subject><subject>Multilayer perceptrons</subject><subject>Networks</subject><subject>Printers</subject><subject>Testing</subject><issn>1045-9227</issn><issn>2162-237X</issn><issn>1941-0093</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFks9rFDEUxwdRbK3eBUFCD3qa9SWTn8eyWC2068F6DtnMG0zNTGpmprL715t1F1o8tKcXHp_vB174VtVbCgtKwXy6Xq0WDIAtKDBqAJ5Vx9RwWgOY5nl5Axe1YUwdVa_G8QaAcgHyZXVENeOcG3Fcba7mOIU6xDj3YXDDRHyKKZOMtzm1s59CGkhXFhjRTzkNwRPvesxuJHfBkeXZ6vziOxlwzqnu5u12Q_qSiy6X3fQn5V-kxbvgkfifLjs_YQ5bt7O-rl50Lo745jBPqh_nn6-XX-vLb18ulmeXteeNmup1y9da0TXXjnfIGHCKThtQBil3oIQG7jQzvpPKtdA10rdCydYz75TksjmpPu695aDfM46T7cPoMUY3YJpHa2SjpaaUPkmqhjOu1T_nh0dJphvFheBPg4pRCUIU8PQ_8CbNeSgfYw0DLU1jdjbYQz6ncczY2dscepc3loLdFcKWQthdIeyhECXy_uCd1z2294FDAwrwbg8ERHzg28f_AmGjugg</recordid><startdate>20020701</startdate><enddate>20020701</enddate><creator>Mizutani, E.</creator><creator>Nishio, K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20020701</creationdate><title>Multi-illuminant color reproduction for electronic cameras via CANFIS neuro-fuzzy modular network device characterization</title><author>Mizutani, E. ; Nishio, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-bd4b871b48a4fe22041ea89079e14a075804a829cf67ad0f36cd576dc2ca76463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Adaptive systems</topic><topic>Artificial neural networks</topic><topic>Cameras</topic><topic>Color</topic><topic>Electronics</topic><topic>Fuzzy logic</topic><topic>Humans</topic><topic>Illumination</topic><topic>Image converters</topic><topic>Layout</topic><topic>Lighting</topic><topic>Mathematical models</topic><topic>Multilayer perceptrons</topic><topic>Networks</topic><topic>Printers</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Mizutani, E.</creatorcontrib><creatorcontrib>Nishio, K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mizutani, E.</au><au>Nishio, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-illuminant color reproduction for electronic cameras via CANFIS neuro-fuzzy modular network device characterization</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>2002-07-01</date><risdate>2002</risdate><volume>13</volume><issue>4</issue><spage>1009</spage><epage>1022</epage><pages>1009-1022</pages><issn>1045-9227</issn><issn>2162-237X</issn><eissn>1941-0093</eissn><eissn>2162-2388</eissn><coden>ITNNEP</coden><abstract>We describe color reproduction and correction of images captured by electronic cameras under multiple illumination (or lighting) conditions, relating to color device characterization for enhancing the quality of color in the obtained images. In particular, we highlight a very practical use of neuro-fuzzy modular network coactive neuro-fuzzy inference systems (CANFIS) models for this application, and discuss their strengths and weaknesses compared with other adaptive network models (e.g., multilayer perceptron (MLP)) as well as conventional lookup-table-type (TRC-matrix) methods. Our in-depth investigation based on comprehensive numerical tests with a wide variety of illumination/lighting data (180 sources of illumination) shows that the "neuro-fuzzy CANFIS with MLP local experts" possesses a remarkable generalization/approximation capacity, even under a very restricted condition where only four-illuminant data sets were permitted to be used for optimization because of efficient practical implementation subject to an industrial setting.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18244495</pmid><doi>10.1109/TNN.2002.1021900</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1045-9227
ispartof IEEE transaction on neural networks and learning systems, 2002-07, Vol.13 (4), p.1009-1022
issn 1045-9227
2162-237X
1941-0093
2162-2388
language eng
recordid cdi_crossref_primary_10_1109_TNN_2002_1021900
source IEEE Electronic Library (IEL)
subjects Adaptive systems
Artificial neural networks
Cameras
Color
Electronics
Fuzzy logic
Humans
Illumination
Image converters
Layout
Lighting
Mathematical models
Multilayer perceptrons
Networks
Printers
Testing
title Multi-illuminant color reproduction for electronic cameras via CANFIS neuro-fuzzy modular network device characterization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T06%3A41%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-illuminant%20color%20reproduction%20for%20electronic%20cameras%20via%20CANFIS%20neuro-fuzzy%20modular%20network%20device%20characterization&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Mizutani,%20E.&rft.date=2002-07-01&rft.volume=13&rft.issue=4&rft.spage=1009&rft.epage=1022&rft.pages=1009-1022&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/TNN.2002.1021900&rft_dat=%3Cproquest_RIE%3E963868111%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920869394&rft_id=info:pmid/18244495&rft_ieee_id=1021900&rfr_iscdi=true