STFormer: Spatial-Temporal-Aware Transformer for Video Instance Segmentation
Video instance segmentation (VIS) is a challenging task, requiring handling object classification, segmentation, and tracking in videos. Existing Transformer-based VIS approaches have shown remarkable success, combining encoded features and instance queries as decoder inputs. However, their decoder...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2024-10, Vol.PP, p.1-15 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | PP |
creator | Li, Hao Wang, Wei Wang, Mengzhu Tan, Huibin Lan, Long Luo, Zhigang Liu, Xinwang Li, Kenli |
description | Video instance segmentation (VIS) is a challenging task, requiring handling object classification, segmentation, and tracking in videos. Existing Transformer-based VIS approaches have shown remarkable success, combining encoded features and instance queries as decoder inputs. However, their decoder inputs are low-resolution due to computational cost, resulting in a loss of fine-grained information, sensitivity to background interference, and poor handling of small objects. Moreover, the queries are randomly initialized without location information, hindering convergence efficiency and accurate object instance localization. To address these issues, we propose a novel VIS approach, STFormer, with a spatial-temporal feature aggregation (STFA) module and spatial-temporal-aware Transformer (STT). Specifically, STFA obtains robust high-resolution masked features efficiently for the decoder, while STT's location-guided instance query (LGIQ) improves initial instance queries. STFormer preserves more fine-grained information, improves convergence efficiency, and localizes object instance features accurately. Extensive experiments on YouTube-VIS 2019, YouTube-VIS 2021, and OVIS datasets show that STFormer outperforms mainstream VIS methods. |
doi_str_mv | 10.1109/TNNLS.2024.3455551 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNNLS_2024_3455551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10721237</ieee_id><sourcerecordid>3117993273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c205t-fe726011ca214d73c505173049e0bf7b6b092e4f73de882348ac26392a0e55f03</originalsourceid><addsrcrecordid>eNpNkEtLw0AUhQdRbKn9AyKSpZvUeSWTcVeK1UKoi0RxN0ySG4nk5UyC-O-dPizezbmL75zFh9A1wQtCsLxPt9s4WVBM-YLxwB05Q1NKQupTFkXnp1-8T9Dc2k_sLsRByOUlmjDJSUS4nKI4SdedacA8eEmvh0rXfgpN3xn3LL-1AS81urXlnvFceG9VAZ23ae2g2xy8BD4aaAdX7dordFHq2sL8mDP0un5MV89-_PK0WS1jP6c4GPwSBA0xIbmmhBeC5QEOiGCYS8BZKbIww5ICLwUrIIoo45HOacgk1RiCoMRshu4Ou73pvkawg2oqm0Nd6xa60SpGiJCSUcEcSg9objprDZSqN1WjzY8iWO1Eqr1ItROpjiJd6fa4P2YNFKfKnzYH3ByACgD-LQpKnHH2C5tZdk8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117993273</pqid></control><display><type>article</type><title>STFormer: Spatial-Temporal-Aware Transformer for Video Instance Segmentation</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Hao ; Wang, Wei ; Wang, Mengzhu ; Tan, Huibin ; Lan, Long ; Luo, Zhigang ; Liu, Xinwang ; Li, Kenli</creator><creatorcontrib>Li, Hao ; Wang, Wei ; Wang, Mengzhu ; Tan, Huibin ; Lan, Long ; Luo, Zhigang ; Liu, Xinwang ; Li, Kenli</creatorcontrib><description>Video instance segmentation (VIS) is a challenging task, requiring handling object classification, segmentation, and tracking in videos. Existing Transformer-based VIS approaches have shown remarkable success, combining encoded features and instance queries as decoder inputs. However, their decoder inputs are low-resolution due to computational cost, resulting in a loss of fine-grained information, sensitivity to background interference, and poor handling of small objects. Moreover, the queries are randomly initialized without location information, hindering convergence efficiency and accurate object instance localization. To address these issues, we propose a novel VIS approach, STFormer, with a spatial-temporal feature aggregation (STFA) module and spatial-temporal-aware Transformer (STT). Specifically, STFA obtains robust high-resolution masked features efficiently for the decoder, while STT's location-guided instance query (LGIQ) improves initial instance queries. STFormer preserves more fine-grained information, improves convergence efficiency, and localizes object instance features accurately. Extensive experiments on YouTube-VIS 2019, YouTube-VIS 2021, and OVIS datasets show that STFormer outperforms mainstream VIS methods.</description><identifier>ISSN: 2162-237X</identifier><identifier>ISSN: 2162-2388</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2024.3455551</identifier><identifier>PMID: 39418149</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Computational modeling ; Computer vision ; Convergence ; Decoding ; Fine-grained information ; Head ; Instance segmentation ; Interference ; Motion segmentation ; Object recognition ; object tracking ; transformer ; Transformers ; video instance segmentation (VIS)</subject><ispartof>IEEE transaction on neural networks and learning systems, 2024-10, Vol.PP, p.1-15</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>dreamkily@gmail.com ; leemohao9695@gmail.com ; long.lan@nudt.edu.cn ; tanhuibin2815@163.com ; lkl@hnu.edu.cn ; wangwei29@mail.sysu.edu.cn ; xinwangliu@nudt.edu.cn ; zgluo@nudt.edu.cn</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10721237$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10721237$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39418149$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Wang, Mengzhu</creatorcontrib><creatorcontrib>Tan, Huibin</creatorcontrib><creatorcontrib>Lan, Long</creatorcontrib><creatorcontrib>Luo, Zhigang</creatorcontrib><creatorcontrib>Liu, Xinwang</creatorcontrib><creatorcontrib>Li, Kenli</creatorcontrib><title>STFormer: Spatial-Temporal-Aware Transformer for Video Instance Segmentation</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Video instance segmentation (VIS) is a challenging task, requiring handling object classification, segmentation, and tracking in videos. Existing Transformer-based VIS approaches have shown remarkable success, combining encoded features and instance queries as decoder inputs. However, their decoder inputs are low-resolution due to computational cost, resulting in a loss of fine-grained information, sensitivity to background interference, and poor handling of small objects. Moreover, the queries are randomly initialized without location information, hindering convergence efficiency and accurate object instance localization. To address these issues, we propose a novel VIS approach, STFormer, with a spatial-temporal feature aggregation (STFA) module and spatial-temporal-aware Transformer (STT). Specifically, STFA obtains robust high-resolution masked features efficiently for the decoder, while STT's location-guided instance query (LGIQ) improves initial instance queries. STFormer preserves more fine-grained information, improves convergence efficiency, and localizes object instance features accurately. Extensive experiments on YouTube-VIS 2019, YouTube-VIS 2021, and OVIS datasets show that STFormer outperforms mainstream VIS methods.</description><subject>Computational modeling</subject><subject>Computer vision</subject><subject>Convergence</subject><subject>Decoding</subject><subject>Fine-grained information</subject><subject>Head</subject><subject>Instance segmentation</subject><subject>Interference</subject><subject>Motion segmentation</subject><subject>Object recognition</subject><subject>object tracking</subject><subject>transformer</subject><subject>Transformers</subject><subject>video instance segmentation (VIS)</subject><issn>2162-237X</issn><issn>2162-2388</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtLw0AUhQdRbKn9AyKSpZvUeSWTcVeK1UKoi0RxN0ySG4nk5UyC-O-dPizezbmL75zFh9A1wQtCsLxPt9s4WVBM-YLxwB05Q1NKQupTFkXnp1-8T9Dc2k_sLsRByOUlmjDJSUS4nKI4SdedacA8eEmvh0rXfgpN3xn3LL-1AS81urXlnvFceG9VAZ23ae2g2xy8BD4aaAdX7dordFHq2sL8mDP0un5MV89-_PK0WS1jP6c4GPwSBA0xIbmmhBeC5QEOiGCYS8BZKbIww5ICLwUrIIoo45HOacgk1RiCoMRshu4Ou73pvkawg2oqm0Nd6xa60SpGiJCSUcEcSg9objprDZSqN1WjzY8iWO1Eqr1ItROpjiJd6fa4P2YNFKfKnzYH3ByACgD-LQpKnHH2C5tZdk8</recordid><startdate>20241017</startdate><enddate>20241017</enddate><creator>Li, Hao</creator><creator>Wang, Wei</creator><creator>Wang, Mengzhu</creator><creator>Tan, Huibin</creator><creator>Lan, Long</creator><creator>Luo, Zhigang</creator><creator>Liu, Xinwang</creator><creator>Li, Kenli</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/dreamkily@gmail.com</orcidid><orcidid>https://orcid.org/leemohao9695@gmail.com</orcidid><orcidid>https://orcid.org/long.lan@nudt.edu.cn</orcidid><orcidid>https://orcid.org/tanhuibin2815@163.com</orcidid><orcidid>https://orcid.org/lkl@hnu.edu.cn</orcidid><orcidid>https://orcid.org/wangwei29@mail.sysu.edu.cn</orcidid><orcidid>https://orcid.org/xinwangliu@nudt.edu.cn</orcidid><orcidid>https://orcid.org/zgluo@nudt.edu.cn</orcidid></search><sort><creationdate>20241017</creationdate><title>STFormer: Spatial-Temporal-Aware Transformer for Video Instance Segmentation</title><author>Li, Hao ; Wang, Wei ; Wang, Mengzhu ; Tan, Huibin ; Lan, Long ; Luo, Zhigang ; Liu, Xinwang ; Li, Kenli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c205t-fe726011ca214d73c505173049e0bf7b6b092e4f73de882348ac26392a0e55f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computational modeling</topic><topic>Computer vision</topic><topic>Convergence</topic><topic>Decoding</topic><topic>Fine-grained information</topic><topic>Head</topic><topic>Instance segmentation</topic><topic>Interference</topic><topic>Motion segmentation</topic><topic>Object recognition</topic><topic>object tracking</topic><topic>transformer</topic><topic>Transformers</topic><topic>video instance segmentation (VIS)</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Wang, Mengzhu</creatorcontrib><creatorcontrib>Tan, Huibin</creatorcontrib><creatorcontrib>Lan, Long</creatorcontrib><creatorcontrib>Luo, Zhigang</creatorcontrib><creatorcontrib>Liu, Xinwang</creatorcontrib><creatorcontrib>Li, Kenli</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Hao</au><au>Wang, Wei</au><au>Wang, Mengzhu</au><au>Tan, Huibin</au><au>Lan, Long</au><au>Luo, Zhigang</au><au>Liu, Xinwang</au><au>Li, Kenli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>STFormer: Spatial-Temporal-Aware Transformer for Video Instance Segmentation</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2024-10-17</date><risdate>2024</risdate><volume>PP</volume><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>2162-237X</issn><issn>2162-2388</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Video instance segmentation (VIS) is a challenging task, requiring handling object classification, segmentation, and tracking in videos. Existing Transformer-based VIS approaches have shown remarkable success, combining encoded features and instance queries as decoder inputs. However, their decoder inputs are low-resolution due to computational cost, resulting in a loss of fine-grained information, sensitivity to background interference, and poor handling of small objects. Moreover, the queries are randomly initialized without location information, hindering convergence efficiency and accurate object instance localization. To address these issues, we propose a novel VIS approach, STFormer, with a spatial-temporal feature aggregation (STFA) module and spatial-temporal-aware Transformer (STT). Specifically, STFA obtains robust high-resolution masked features efficiently for the decoder, while STT's location-guided instance query (LGIQ) improves initial instance queries. STFormer preserves more fine-grained information, improves convergence efficiency, and localizes object instance features accurately. Extensive experiments on YouTube-VIS 2019, YouTube-VIS 2021, and OVIS datasets show that STFormer outperforms mainstream VIS methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>39418149</pmid><doi>10.1109/TNNLS.2024.3455551</doi><tpages>15</tpages><orcidid>https://orcid.org/dreamkily@gmail.com</orcidid><orcidid>https://orcid.org/leemohao9695@gmail.com</orcidid><orcidid>https://orcid.org/long.lan@nudt.edu.cn</orcidid><orcidid>https://orcid.org/tanhuibin2815@163.com</orcidid><orcidid>https://orcid.org/lkl@hnu.edu.cn</orcidid><orcidid>https://orcid.org/wangwei29@mail.sysu.edu.cn</orcidid><orcidid>https://orcid.org/xinwangliu@nudt.edu.cn</orcidid><orcidid>https://orcid.org/zgluo@nudt.edu.cn</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2024-10, Vol.PP, p.1-15 |
issn | 2162-237X 2162-2388 2162-2388 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TNNLS_2024_3455551 |
source | IEEE Electronic Library (IEL) |
subjects | Computational modeling Computer vision Convergence Decoding Fine-grained information Head Instance segmentation Interference Motion segmentation Object recognition object tracking transformer Transformers video instance segmentation (VIS) |
title | STFormer: Spatial-Temporal-Aware Transformer for Video Instance Segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T08%3A23%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=STFormer:%20Spatial-Temporal-Aware%20Transformer%20for%20Video%20Instance%20Segmentation&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Li,%20Hao&rft.date=2024-10-17&rft.volume=PP&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2024.3455551&rft_dat=%3Cproquest_RIE%3E3117993273%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117993273&rft_id=info:pmid/39418149&rft_ieee_id=10721237&rfr_iscdi=true |