Self-Organizing Robust Fuzzy Neural Network for Nonlinear System Modeling
Fuzzy neural network (FNN) is a structured learning technique that has been successfully adopted in nonlinear system modeling. However, since there exist uncertain external disturbances arising from mismatched model errors, sensor noises, or unknown environments, FNN generally fails to achieve the d...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2023-11, Vol.36 (1), p.911-923 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 923 |
---|---|
container_issue | 1 |
container_start_page | 911 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 36 |
creator | Han, Honggui Wang, Jiaqian Liu, Zheng Yang, Hongyan Qiao, Junfei |
description | Fuzzy neural network (FNN) is a structured learning technique that has been successfully adopted in nonlinear system modeling. However, since there exist uncertain external disturbances arising from mismatched model errors, sensor noises, or unknown environments, FNN generally fails to achieve the desirable performance of modeling results. To overcome this problem, a self-organization robust FNN (SOR-FNN) is developed in this article. First, an information integration mechanism (IIM), consisting of partition information and individual information, is introduced to dynamically adjust the structure of SOR-FNN. The proposed mechanism can make itself adapt to uncertain environments. Second, a dynamic learning algorithm based on the \alpha -divergence loss function ( \alpha -DLA) is designed to update the parameters of SOR-FNN. Then, this learning algorithm is able to reduce the sensibility of disturbances and improve the robustness of Third, the convergence of SOR-FNN is given by the Lyapunov theorem. Then, the theoretical analysis can ensure the successful application of SOR-FNN. Finally, the proposed SOR-FNN is tested on several benchmark datasets and a practical application to validate its merits. The experimental results indicate that the proposed SOR-FNN can obtain superior performance in terms of model accuracy and robustness. |
doi_str_mv | 10.1109/TNNLS.2023.3334150 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNNLS_2023_3334150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10333073</ieee_id><sourcerecordid>2895705706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-e61e8da0ad60553f12d3156cfd19270324cc1c4bc0e1b012b328b38fecc6fe3e3</originalsourceid><addsrcrecordid>eNpNkG9LwzAQxoMobsx9ARHpS990Jrn-fSnD6WBu4Cb4rqTpZVTbZiYtsn16MzeHx8Edd889HD9CrhkdMUbT-9V8PluOOOUwAoCAhfSM9DmLuM8hSc5PffzeI0NrP6iLiIZRkF6SHiSUpRFAn0yXWCl_YdaiKXdls_Zedd7Z1pt0u93Wm2NnROVK-63Np6e08ea6qcoGhfGWW9ti7b3oAt1kfUUulKgsDo91QN4mj6vxsz9bPE3HDzNf8jhsfYwYJoWgonDfhKAYL4CFkVQFS3lMgQdSMhnkkiLLKeM58CSHRKGUkUJAGJC7g-_G6K8ObZvVpZVYVaJB3dmMJ2kYU5eRk_KDVBptrUGVbUxZC7PNGM32FLNfitmeYnak6I5uj_5dXmNxOvlj5gQ3B0GJiP8c3YrGAD_8onZ5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895705706</pqid></control><display><type>article</type><title>Self-Organizing Robust Fuzzy Neural Network for Nonlinear System Modeling</title><source>IEEE Electronic Library (IEL)</source><creator>Han, Honggui ; Wang, Jiaqian ; Liu, Zheng ; Yang, Hongyan ; Qiao, Junfei</creator><creatorcontrib>Han, Honggui ; Wang, Jiaqian ; Liu, Zheng ; Yang, Hongyan ; Qiao, Junfei</creatorcontrib><description><![CDATA[Fuzzy neural network (FNN) is a structured learning technique that has been successfully adopted in nonlinear system modeling. However, since there exist uncertain external disturbances arising from mismatched model errors, sensor noises, or unknown environments, FNN generally fails to achieve the desirable performance of modeling results. To overcome this problem, a self-organization robust FNN (SOR-FNN) is developed in this article. First, an information integration mechanism (IIM), consisting of partition information and individual information, is introduced to dynamically adjust the structure of SOR-FNN. The proposed mechanism can make itself adapt to uncertain environments. Second, a dynamic learning algorithm based on the <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-divergence loss function (<inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-DLA) is designed to update the parameters of SOR-FNN. Then, this learning algorithm is able to reduce the sensibility of disturbances and improve the robustness of Third, the convergence of SOR-FNN is given by the Lyapunov theorem. Then, the theoretical analysis can ensure the successful application of SOR-FNN. Finally, the proposed SOR-FNN is tested on several benchmark datasets and a practical application to validate its merits. The experimental results indicate that the proposed SOR-FNN can obtain superior performance in terms of model accuracy and robustness.]]></description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2023.3334150</identifier><identifier>PMID: 38019633</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Analytical models ; Dynamic learning algorithm based on α-divergence loss function (α-DLA) ; Fuzzy neural networks ; Heuristic algorithms ; information integration mechanism (IIM) ; Neurons ; nonlinear system modeling ; Prediction algorithms ; Robustness ; self-organization ; Simulation</subject><ispartof>IEEE transaction on neural networks and learning systems, 2023-11, Vol.36 (1), p.911-923</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c275t-e61e8da0ad60553f12d3156cfd19270324cc1c4bc0e1b012b328b38fecc6fe3e3</cites><orcidid>0000-0002-1822-4307 ; 0009-0001-9456-5699 ; 0000-0003-3372-4729 ; 0000-0001-5617-4075 ; 0000-0002-1707-6074</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10333073$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10333073$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38019633$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Honggui</creatorcontrib><creatorcontrib>Wang, Jiaqian</creatorcontrib><creatorcontrib>Liu, Zheng</creatorcontrib><creatorcontrib>Yang, Hongyan</creatorcontrib><creatorcontrib>Qiao, Junfei</creatorcontrib><title>Self-Organizing Robust Fuzzy Neural Network for Nonlinear System Modeling</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description><![CDATA[Fuzzy neural network (FNN) is a structured learning technique that has been successfully adopted in nonlinear system modeling. However, since there exist uncertain external disturbances arising from mismatched model errors, sensor noises, or unknown environments, FNN generally fails to achieve the desirable performance of modeling results. To overcome this problem, a self-organization robust FNN (SOR-FNN) is developed in this article. First, an information integration mechanism (IIM), consisting of partition information and individual information, is introduced to dynamically adjust the structure of SOR-FNN. The proposed mechanism can make itself adapt to uncertain environments. Second, a dynamic learning algorithm based on the <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-divergence loss function (<inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-DLA) is designed to update the parameters of SOR-FNN. Then, this learning algorithm is able to reduce the sensibility of disturbances and improve the robustness of Third, the convergence of SOR-FNN is given by the Lyapunov theorem. Then, the theoretical analysis can ensure the successful application of SOR-FNN. Finally, the proposed SOR-FNN is tested on several benchmark datasets and a practical application to validate its merits. The experimental results indicate that the proposed SOR-FNN can obtain superior performance in terms of model accuracy and robustness.]]></description><subject>Analytical models</subject><subject>Dynamic learning algorithm based on α-divergence loss function (α-DLA)</subject><subject>Fuzzy neural networks</subject><subject>Heuristic algorithms</subject><subject>information integration mechanism (IIM)</subject><subject>Neurons</subject><subject>nonlinear system modeling</subject><subject>Prediction algorithms</subject><subject>Robustness</subject><subject>self-organization</subject><subject>Simulation</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkG9LwzAQxoMobsx9ARHpS990Jrn-fSnD6WBu4Cb4rqTpZVTbZiYtsn16MzeHx8Edd889HD9CrhkdMUbT-9V8PluOOOUwAoCAhfSM9DmLuM8hSc5PffzeI0NrP6iLiIZRkF6SHiSUpRFAn0yXWCl_YdaiKXdls_Zedd7Z1pt0u93Wm2NnROVK-63Np6e08ea6qcoGhfGWW9ti7b3oAt1kfUUulKgsDo91QN4mj6vxsz9bPE3HDzNf8jhsfYwYJoWgonDfhKAYL4CFkVQFS3lMgQdSMhnkkiLLKeM58CSHRKGUkUJAGJC7g-_G6K8ObZvVpZVYVaJB3dmMJ2kYU5eRk_KDVBptrUGVbUxZC7PNGM32FLNfitmeYnak6I5uj_5dXmNxOvlj5gQ3B0GJiP8c3YrGAD_8onZ5</recordid><startdate>20231129</startdate><enddate>20231129</enddate><creator>Han, Honggui</creator><creator>Wang, Jiaqian</creator><creator>Liu, Zheng</creator><creator>Yang, Hongyan</creator><creator>Qiao, Junfei</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1822-4307</orcidid><orcidid>https://orcid.org/0009-0001-9456-5699</orcidid><orcidid>https://orcid.org/0000-0003-3372-4729</orcidid><orcidid>https://orcid.org/0000-0001-5617-4075</orcidid><orcidid>https://orcid.org/0000-0002-1707-6074</orcidid></search><sort><creationdate>20231129</creationdate><title>Self-Organizing Robust Fuzzy Neural Network for Nonlinear System Modeling</title><author>Han, Honggui ; Wang, Jiaqian ; Liu, Zheng ; Yang, Hongyan ; Qiao, Junfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-e61e8da0ad60553f12d3156cfd19270324cc1c4bc0e1b012b328b38fecc6fe3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytical models</topic><topic>Dynamic learning algorithm based on α-divergence loss function (α-DLA)</topic><topic>Fuzzy neural networks</topic><topic>Heuristic algorithms</topic><topic>information integration mechanism (IIM)</topic><topic>Neurons</topic><topic>nonlinear system modeling</topic><topic>Prediction algorithms</topic><topic>Robustness</topic><topic>self-organization</topic><topic>Simulation</topic><toplevel>online_resources</toplevel><creatorcontrib>Han, Honggui</creatorcontrib><creatorcontrib>Wang, Jiaqian</creatorcontrib><creatorcontrib>Liu, Zheng</creatorcontrib><creatorcontrib>Yang, Hongyan</creatorcontrib><creatorcontrib>Qiao, Junfei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Han, Honggui</au><au>Wang, Jiaqian</au><au>Liu, Zheng</au><au>Yang, Hongyan</au><au>Qiao, Junfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Organizing Robust Fuzzy Neural Network for Nonlinear System Modeling</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2023-11-29</date><risdate>2023</risdate><volume>36</volume><issue>1</issue><spage>911</spage><epage>923</epage><pages>911-923</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract><![CDATA[Fuzzy neural network (FNN) is a structured learning technique that has been successfully adopted in nonlinear system modeling. However, since there exist uncertain external disturbances arising from mismatched model errors, sensor noises, or unknown environments, FNN generally fails to achieve the desirable performance of modeling results. To overcome this problem, a self-organization robust FNN (SOR-FNN) is developed in this article. First, an information integration mechanism (IIM), consisting of partition information and individual information, is introduced to dynamically adjust the structure of SOR-FNN. The proposed mechanism can make itself adapt to uncertain environments. Second, a dynamic learning algorithm based on the <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-divergence loss function (<inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-DLA) is designed to update the parameters of SOR-FNN. Then, this learning algorithm is able to reduce the sensibility of disturbances and improve the robustness of Third, the convergence of SOR-FNN is given by the Lyapunov theorem. Then, the theoretical analysis can ensure the successful application of SOR-FNN. Finally, the proposed SOR-FNN is tested on several benchmark datasets and a practical application to validate its merits. The experimental results indicate that the proposed SOR-FNN can obtain superior performance in terms of model accuracy and robustness.]]></abstract><cop>United States</cop><pub>IEEE</pub><pmid>38019633</pmid><doi>10.1109/TNNLS.2023.3334150</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1822-4307</orcidid><orcidid>https://orcid.org/0009-0001-9456-5699</orcidid><orcidid>https://orcid.org/0000-0003-3372-4729</orcidid><orcidid>https://orcid.org/0000-0001-5617-4075</orcidid><orcidid>https://orcid.org/0000-0002-1707-6074</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2023-11, Vol.36 (1), p.911-923 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TNNLS_2023_3334150 |
source | IEEE Electronic Library (IEL) |
subjects | Analytical models Dynamic learning algorithm based on α-divergence loss function (α-DLA) Fuzzy neural networks Heuristic algorithms information integration mechanism (IIM) Neurons nonlinear system modeling Prediction algorithms Robustness self-organization Simulation |
title | Self-Organizing Robust Fuzzy Neural Network for Nonlinear System Modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A43%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Organizing%20Robust%20Fuzzy%20Neural%20Network%20for%20Nonlinear%20System%20Modeling&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Han,%20Honggui&rft.date=2023-11-29&rft.volume=36&rft.issue=1&rft.spage=911&rft.epage=923&rft.pages=911-923&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2023.3334150&rft_dat=%3Cproquest_RIE%3E2895705706%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2895705706&rft_id=info:pmid/38019633&rft_ieee_id=10333073&rfr_iscdi=true |