Self-Organizing Robust Fuzzy Neural Network for Nonlinear System Modeling

Fuzzy neural network (FNN) is a structured learning technique that has been successfully adopted in nonlinear system modeling. However, since there exist uncertain external disturbances arising from mismatched model errors, sensor noises, or unknown environments, FNN generally fails to achieve the d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2023-11, Vol.36 (1), p.911-923
Hauptverfasser: Han, Honggui, Wang, Jiaqian, Liu, Zheng, Yang, Hongyan, Qiao, Junfei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 923
container_issue 1
container_start_page 911
container_title IEEE transaction on neural networks and learning systems
container_volume 36
creator Han, Honggui
Wang, Jiaqian
Liu, Zheng
Yang, Hongyan
Qiao, Junfei
description Fuzzy neural network (FNN) is a structured learning technique that has been successfully adopted in nonlinear system modeling. However, since there exist uncertain external disturbances arising from mismatched model errors, sensor noises, or unknown environments, FNN generally fails to achieve the desirable performance of modeling results. To overcome this problem, a self-organization robust FNN (SOR-FNN) is developed in this article. First, an information integration mechanism (IIM), consisting of partition information and individual information, is introduced to dynamically adjust the structure of SOR-FNN. The proposed mechanism can make itself adapt to uncertain environments. Second, a dynamic learning algorithm based on the \alpha -divergence loss function ( \alpha -DLA) is designed to update the parameters of SOR-FNN. Then, this learning algorithm is able to reduce the sensibility of disturbances and improve the robustness of Third, the convergence of SOR-FNN is given by the Lyapunov theorem. Then, the theoretical analysis can ensure the successful application of SOR-FNN. Finally, the proposed SOR-FNN is tested on several benchmark datasets and a practical application to validate its merits. The experimental results indicate that the proposed SOR-FNN can obtain superior performance in terms of model accuracy and robustness.
doi_str_mv 10.1109/TNNLS.2023.3334150
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNNLS_2023_3334150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10333073</ieee_id><sourcerecordid>2895705706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-e61e8da0ad60553f12d3156cfd19270324cc1c4bc0e1b012b328b38fecc6fe3e3</originalsourceid><addsrcrecordid>eNpNkG9LwzAQxoMobsx9ARHpS990Jrn-fSnD6WBu4Cb4rqTpZVTbZiYtsn16MzeHx8Edd889HD9CrhkdMUbT-9V8PluOOOUwAoCAhfSM9DmLuM8hSc5PffzeI0NrP6iLiIZRkF6SHiSUpRFAn0yXWCl_YdaiKXdls_Zedd7Z1pt0u93Wm2NnROVK-63Np6e08ea6qcoGhfGWW9ti7b3oAt1kfUUulKgsDo91QN4mj6vxsz9bPE3HDzNf8jhsfYwYJoWgonDfhKAYL4CFkVQFS3lMgQdSMhnkkiLLKeM58CSHRKGUkUJAGJC7g-_G6K8ObZvVpZVYVaJB3dmMJ2kYU5eRk_KDVBptrUGVbUxZC7PNGM32FLNfitmeYnak6I5uj_5dXmNxOvlj5gQ3B0GJiP8c3YrGAD_8onZ5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895705706</pqid></control><display><type>article</type><title>Self-Organizing Robust Fuzzy Neural Network for Nonlinear System Modeling</title><source>IEEE Electronic Library (IEL)</source><creator>Han, Honggui ; Wang, Jiaqian ; Liu, Zheng ; Yang, Hongyan ; Qiao, Junfei</creator><creatorcontrib>Han, Honggui ; Wang, Jiaqian ; Liu, Zheng ; Yang, Hongyan ; Qiao, Junfei</creatorcontrib><description><![CDATA[Fuzzy neural network (FNN) is a structured learning technique that has been successfully adopted in nonlinear system modeling. However, since there exist uncertain external disturbances arising from mismatched model errors, sensor noises, or unknown environments, FNN generally fails to achieve the desirable performance of modeling results. To overcome this problem, a self-organization robust FNN (SOR-FNN) is developed in this article. First, an information integration mechanism (IIM), consisting of partition information and individual information, is introduced to dynamically adjust the structure of SOR-FNN. The proposed mechanism can make itself adapt to uncertain environments. Second, a dynamic learning algorithm based on the <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-divergence loss function (<inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-DLA) is designed to update the parameters of SOR-FNN. Then, this learning algorithm is able to reduce the sensibility of disturbances and improve the robustness of Third, the convergence of SOR-FNN is given by the Lyapunov theorem. Then, the theoretical analysis can ensure the successful application of SOR-FNN. Finally, the proposed SOR-FNN is tested on several benchmark datasets and a practical application to validate its merits. The experimental results indicate that the proposed SOR-FNN can obtain superior performance in terms of model accuracy and robustness.]]></description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2023.3334150</identifier><identifier>PMID: 38019633</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Analytical models ; Dynamic learning algorithm based on α-divergence loss function (α-DLA) ; Fuzzy neural networks ; Heuristic algorithms ; information integration mechanism (IIM) ; Neurons ; nonlinear system modeling ; Prediction algorithms ; Robustness ; self-organization ; Simulation</subject><ispartof>IEEE transaction on neural networks and learning systems, 2023-11, Vol.36 (1), p.911-923</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c275t-e61e8da0ad60553f12d3156cfd19270324cc1c4bc0e1b012b328b38fecc6fe3e3</cites><orcidid>0000-0002-1822-4307 ; 0009-0001-9456-5699 ; 0000-0003-3372-4729 ; 0000-0001-5617-4075 ; 0000-0002-1707-6074</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10333073$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10333073$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38019633$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Honggui</creatorcontrib><creatorcontrib>Wang, Jiaqian</creatorcontrib><creatorcontrib>Liu, Zheng</creatorcontrib><creatorcontrib>Yang, Hongyan</creatorcontrib><creatorcontrib>Qiao, Junfei</creatorcontrib><title>Self-Organizing Robust Fuzzy Neural Network for Nonlinear System Modeling</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description><![CDATA[Fuzzy neural network (FNN) is a structured learning technique that has been successfully adopted in nonlinear system modeling. However, since there exist uncertain external disturbances arising from mismatched model errors, sensor noises, or unknown environments, FNN generally fails to achieve the desirable performance of modeling results. To overcome this problem, a self-organization robust FNN (SOR-FNN) is developed in this article. First, an information integration mechanism (IIM), consisting of partition information and individual information, is introduced to dynamically adjust the structure of SOR-FNN. The proposed mechanism can make itself adapt to uncertain environments. Second, a dynamic learning algorithm based on the <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-divergence loss function (<inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-DLA) is designed to update the parameters of SOR-FNN. Then, this learning algorithm is able to reduce the sensibility of disturbances and improve the robustness of Third, the convergence of SOR-FNN is given by the Lyapunov theorem. Then, the theoretical analysis can ensure the successful application of SOR-FNN. Finally, the proposed SOR-FNN is tested on several benchmark datasets and a practical application to validate its merits. The experimental results indicate that the proposed SOR-FNN can obtain superior performance in terms of model accuracy and robustness.]]></description><subject>Analytical models</subject><subject>Dynamic learning algorithm based on α-divergence loss function (α-DLA)</subject><subject>Fuzzy neural networks</subject><subject>Heuristic algorithms</subject><subject>information integration mechanism (IIM)</subject><subject>Neurons</subject><subject>nonlinear system modeling</subject><subject>Prediction algorithms</subject><subject>Robustness</subject><subject>self-organization</subject><subject>Simulation</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkG9LwzAQxoMobsx9ARHpS990Jrn-fSnD6WBu4Cb4rqTpZVTbZiYtsn16MzeHx8Edd889HD9CrhkdMUbT-9V8PluOOOUwAoCAhfSM9DmLuM8hSc5PffzeI0NrP6iLiIZRkF6SHiSUpRFAn0yXWCl_YdaiKXdls_Zedd7Z1pt0u93Wm2NnROVK-63Np6e08ea6qcoGhfGWW9ti7b3oAt1kfUUulKgsDo91QN4mj6vxsz9bPE3HDzNf8jhsfYwYJoWgonDfhKAYL4CFkVQFS3lMgQdSMhnkkiLLKeM58CSHRKGUkUJAGJC7g-_G6K8ObZvVpZVYVaJB3dmMJ2kYU5eRk_KDVBptrUGVbUxZC7PNGM32FLNfitmeYnak6I5uj_5dXmNxOvlj5gQ3B0GJiP8c3YrGAD_8onZ5</recordid><startdate>20231129</startdate><enddate>20231129</enddate><creator>Han, Honggui</creator><creator>Wang, Jiaqian</creator><creator>Liu, Zheng</creator><creator>Yang, Hongyan</creator><creator>Qiao, Junfei</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1822-4307</orcidid><orcidid>https://orcid.org/0009-0001-9456-5699</orcidid><orcidid>https://orcid.org/0000-0003-3372-4729</orcidid><orcidid>https://orcid.org/0000-0001-5617-4075</orcidid><orcidid>https://orcid.org/0000-0002-1707-6074</orcidid></search><sort><creationdate>20231129</creationdate><title>Self-Organizing Robust Fuzzy Neural Network for Nonlinear System Modeling</title><author>Han, Honggui ; Wang, Jiaqian ; Liu, Zheng ; Yang, Hongyan ; Qiao, Junfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-e61e8da0ad60553f12d3156cfd19270324cc1c4bc0e1b012b328b38fecc6fe3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytical models</topic><topic>Dynamic learning algorithm based on α-divergence loss function (α-DLA)</topic><topic>Fuzzy neural networks</topic><topic>Heuristic algorithms</topic><topic>information integration mechanism (IIM)</topic><topic>Neurons</topic><topic>nonlinear system modeling</topic><topic>Prediction algorithms</topic><topic>Robustness</topic><topic>self-organization</topic><topic>Simulation</topic><toplevel>online_resources</toplevel><creatorcontrib>Han, Honggui</creatorcontrib><creatorcontrib>Wang, Jiaqian</creatorcontrib><creatorcontrib>Liu, Zheng</creatorcontrib><creatorcontrib>Yang, Hongyan</creatorcontrib><creatorcontrib>Qiao, Junfei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Han, Honggui</au><au>Wang, Jiaqian</au><au>Liu, Zheng</au><au>Yang, Hongyan</au><au>Qiao, Junfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Organizing Robust Fuzzy Neural Network for Nonlinear System Modeling</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2023-11-29</date><risdate>2023</risdate><volume>36</volume><issue>1</issue><spage>911</spage><epage>923</epage><pages>911-923</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract><![CDATA[Fuzzy neural network (FNN) is a structured learning technique that has been successfully adopted in nonlinear system modeling. However, since there exist uncertain external disturbances arising from mismatched model errors, sensor noises, or unknown environments, FNN generally fails to achieve the desirable performance of modeling results. To overcome this problem, a self-organization robust FNN (SOR-FNN) is developed in this article. First, an information integration mechanism (IIM), consisting of partition information and individual information, is introduced to dynamically adjust the structure of SOR-FNN. The proposed mechanism can make itself adapt to uncertain environments. Second, a dynamic learning algorithm based on the <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-divergence loss function (<inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-DLA) is designed to update the parameters of SOR-FNN. Then, this learning algorithm is able to reduce the sensibility of disturbances and improve the robustness of Third, the convergence of SOR-FNN is given by the Lyapunov theorem. Then, the theoretical analysis can ensure the successful application of SOR-FNN. Finally, the proposed SOR-FNN is tested on several benchmark datasets and a practical application to validate its merits. The experimental results indicate that the proposed SOR-FNN can obtain superior performance in terms of model accuracy and robustness.]]></abstract><cop>United States</cop><pub>IEEE</pub><pmid>38019633</pmid><doi>10.1109/TNNLS.2023.3334150</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1822-4307</orcidid><orcidid>https://orcid.org/0009-0001-9456-5699</orcidid><orcidid>https://orcid.org/0000-0003-3372-4729</orcidid><orcidid>https://orcid.org/0000-0001-5617-4075</orcidid><orcidid>https://orcid.org/0000-0002-1707-6074</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2023-11, Vol.36 (1), p.911-923
issn 2162-237X
2162-2388
language eng
recordid cdi_crossref_primary_10_1109_TNNLS_2023_3334150
source IEEE Electronic Library (IEL)
subjects Analytical models
Dynamic learning algorithm based on α-divergence loss function (α-DLA)
Fuzzy neural networks
Heuristic algorithms
information integration mechanism (IIM)
Neurons
nonlinear system modeling
Prediction algorithms
Robustness
self-organization
Simulation
title Self-Organizing Robust Fuzzy Neural Network for Nonlinear System Modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A43%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Organizing%20Robust%20Fuzzy%20Neural%20Network%20for%20Nonlinear%20System%20Modeling&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Han,%20Honggui&rft.date=2023-11-29&rft.volume=36&rft.issue=1&rft.spage=911&rft.epage=923&rft.pages=911-923&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2023.3334150&rft_dat=%3Cproquest_RIE%3E2895705706%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2895705706&rft_id=info:pmid/38019633&rft_ieee_id=10333073&rfr_iscdi=true