Lesion-Decoupling-Based Segmentation With Large-Scale Colon and Esophageal Datasets for Early Cancer Diagnosis

Lesions of early cancers often show flat, small, and isochromatic characteristics in medical endoscopy images, which are difficult to be captured. By analyzing the differences between the internal and external features of the lesion area, we propose a lesion-decoupling-based segmentation (LDS) netwo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2024-08, Vol.35 (8), p.11142-11156
Hauptverfasser: Lin, Qing, Tan, Weimin, Cai, Shilun, Yan, Bo, Li, Jichun, Zhong, Yunshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11156
container_issue 8
container_start_page 11142
container_title IEEE transaction on neural networks and learning systems
container_volume 35
creator Lin, Qing
Tan, Weimin
Cai, Shilun
Yan, Bo
Li, Jichun
Zhong, Yunshi
description Lesions of early cancers often show flat, small, and isochromatic characteristics in medical endoscopy images, which are difficult to be captured. By analyzing the differences between the internal and external features of the lesion area, we propose a lesion-decoupling-based segmentation (LDS) network for assisting early cancer diagnosis. We introduce a plug-and-play module called self-sampling similar feature disentangling module (FDM) to obtain accurate lesion boundaries. Then, we propose a feature separation loss (FSL) function to separate pathological features from normal ones. Moreover, since physicians make diagnoses with multimodal data, we propose a multimodal cooperative segmentation network with two different modal images as input: white-light images (WLIs) and narrowband images (NBIs). Our FDM and FSL show a good performance for both single-modal and multimodal segmentations. Extensive experiments on five backbones prove that our FDM and FSL can be easily applied to different backbones for a significant lesion segmentation accuracy improvement, and the maximum increase of mean Intersection over Union (mIoU) is 4.58. For colonoscopy, we can achieve up to mIoU of 91.49 on our Dataset A and 84.41 on the three public datasets. For esophagoscopy, mIoU of 64.32 is best achieved on the WLI dataset and 66.31 on the NBI dataset.
doi_str_mv 10.1109/TNNLS.2023.3248804
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNNLS_2023_3248804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10063232</ieee_id><sourcerecordid>2798708103</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-f49af7225678f45e3b93a34261eec67c48934937947c23a74d189adf81402703</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EoqjwAwghL9mk-NXYXkJbHlJUFq0Eu2hwJiEojYudLvr3BFoqZhYzmrn3Lg4hl5yNOGf2djmfZ4uRYEKOpFDGMHVEzgRPRSKkMceHXb8NyEWMn6yvlI1TZU_JQGomjJTsjLQZxtq3yRSd36ybuq2Se4hY0AVWK2w76Povfa27D5pBqDBZOGiQTnzTn6Et6Cz69QdUCA2dQtdbu0hLH-gMQrOlE2gdBjqtoWp9rOM5OSmhiXixn0OyfJgtJ09J9vL4PLnLEif0uEtKZaHUQoxTbUo1RvluJUglUo7oUu2UsVJZqa3STkjQquDGQlEarpjQTA7JzS52HfzXBmOXr-rosGmgRb-JudDWaGY4k71U7KQu-BgDlvk61CsI25yz_Id0_ks6_yGd70n3put9_uZ9hcXB8se1F1ztBDUi_ktkqRR9fwO-44GN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2798708103</pqid></control><display><type>article</type><title>Lesion-Decoupling-Based Segmentation With Large-Scale Colon and Esophageal Datasets for Early Cancer Diagnosis</title><source>IEEE Electronic Library (IEL)</source><creator>Lin, Qing ; Tan, Weimin ; Cai, Shilun ; Yan, Bo ; Li, Jichun ; Zhong, Yunshi</creator><creatorcontrib>Lin, Qing ; Tan, Weimin ; Cai, Shilun ; Yan, Bo ; Li, Jichun ; Zhong, Yunshi</creatorcontrib><description>Lesions of early cancers often show flat, small, and isochromatic characteristics in medical endoscopy images, which are difficult to be captured. By analyzing the differences between the internal and external features of the lesion area, we propose a lesion-decoupling-based segmentation (LDS) network for assisting early cancer diagnosis. We introduce a plug-and-play module called self-sampling similar feature disentangling module (FDM) to obtain accurate lesion boundaries. Then, we propose a feature separation loss (FSL) function to separate pathological features from normal ones. Moreover, since physicians make diagnoses with multimodal data, we propose a multimodal cooperative segmentation network with two different modal images as input: white-light images (WLIs) and narrowband images (NBIs). Our FDM and FSL show a good performance for both single-modal and multimodal segmentations. Extensive experiments on five backbones prove that our FDM and FSL can be easily applied to different backbones for a significant lesion segmentation accuracy improvement, and the maximum increase of mean Intersection over Union (mIoU) is 4.58. For colonoscopy, we can achieve up to mIoU of 91.49 on our Dataset A and 84.41 on the three public datasets. For esophagoscopy, mIoU of 64.32 is best achieved on the WLI dataset and 66.31 on the NBI dataset.</description><identifier>ISSN: 2162-237X</identifier><identifier>ISSN: 2162-2388</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2023.3248804</identifier><identifier>PMID: 37028330</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Cancer ; Colon - diagnostic imaging ; Colon - pathology ; Colonic Neoplasms - diagnosis ; Colonic Neoplasms - diagnostic imaging ; Colonoscopy ; Colonoscopy - methods ; Databases, Factual ; Dataset ; Early Detection of Cancer - methods ; Esophageal Neoplasms - diagnosis ; Esophageal Neoplasms - diagnostic imaging ; feature separation ; Hospitals ; Humans ; Image Interpretation, Computer-Assisted - methods ; Image Processing, Computer-Assisted - methods ; Image segmentation ; lesion-decoupling segmentation ; Lesions ; Medical diagnostic imaging ; Medical services ; multimodal ; Narrow Band Imaging - methods ; Neural Networks, Computer ; self-sampling similar feature disentangling</subject><ispartof>IEEE transaction on neural networks and learning systems, 2024-08, Vol.35 (8), p.11142-11156</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c275t-f49af7225678f45e3b93a34261eec67c48934937947c23a74d189adf81402703</cites><orcidid>0000-0002-3808-3492 ; 0000-0003-4906-8244 ; 0000-0003-0256-9682 ; 0000-0001-7677-4772</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10063232$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10063232$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37028330$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Qing</creatorcontrib><creatorcontrib>Tan, Weimin</creatorcontrib><creatorcontrib>Cai, Shilun</creatorcontrib><creatorcontrib>Yan, Bo</creatorcontrib><creatorcontrib>Li, Jichun</creatorcontrib><creatorcontrib>Zhong, Yunshi</creatorcontrib><title>Lesion-Decoupling-Based Segmentation With Large-Scale Colon and Esophageal Datasets for Early Cancer Diagnosis</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Lesions of early cancers often show flat, small, and isochromatic characteristics in medical endoscopy images, which are difficult to be captured. By analyzing the differences between the internal and external features of the lesion area, we propose a lesion-decoupling-based segmentation (LDS) network for assisting early cancer diagnosis. We introduce a plug-and-play module called self-sampling similar feature disentangling module (FDM) to obtain accurate lesion boundaries. Then, we propose a feature separation loss (FSL) function to separate pathological features from normal ones. Moreover, since physicians make diagnoses with multimodal data, we propose a multimodal cooperative segmentation network with two different modal images as input: white-light images (WLIs) and narrowband images (NBIs). Our FDM and FSL show a good performance for both single-modal and multimodal segmentations. Extensive experiments on five backbones prove that our FDM and FSL can be easily applied to different backbones for a significant lesion segmentation accuracy improvement, and the maximum increase of mean Intersection over Union (mIoU) is 4.58. For colonoscopy, we can achieve up to mIoU of 91.49 on our Dataset A and 84.41 on the three public datasets. For esophagoscopy, mIoU of 64.32 is best achieved on the WLI dataset and 66.31 on the NBI dataset.</description><subject>Algorithms</subject><subject>Cancer</subject><subject>Colon - diagnostic imaging</subject><subject>Colon - pathology</subject><subject>Colonic Neoplasms - diagnosis</subject><subject>Colonic Neoplasms - diagnostic imaging</subject><subject>Colonoscopy</subject><subject>Colonoscopy - methods</subject><subject>Databases, Factual</subject><subject>Dataset</subject><subject>Early Detection of Cancer - methods</subject><subject>Esophageal Neoplasms - diagnosis</subject><subject>Esophageal Neoplasms - diagnostic imaging</subject><subject>feature separation</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>lesion-decoupling segmentation</subject><subject>Lesions</subject><subject>Medical diagnostic imaging</subject><subject>Medical services</subject><subject>multimodal</subject><subject>Narrow Band Imaging - methods</subject><subject>Neural Networks, Computer</subject><subject>self-sampling similar feature disentangling</subject><issn>2162-237X</issn><issn>2162-2388</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpNkMtOwzAQRS0EoqjwAwghL9mk-NXYXkJbHlJUFq0Eu2hwJiEojYudLvr3BFoqZhYzmrn3Lg4hl5yNOGf2djmfZ4uRYEKOpFDGMHVEzgRPRSKkMceHXb8NyEWMn6yvlI1TZU_JQGomjJTsjLQZxtq3yRSd36ybuq2Se4hY0AVWK2w76Povfa27D5pBqDBZOGiQTnzTn6Et6Cz69QdUCA2dQtdbu0hLH-gMQrOlE2gdBjqtoWp9rOM5OSmhiXixn0OyfJgtJ09J9vL4PLnLEif0uEtKZaHUQoxTbUo1RvluJUglUo7oUu2UsVJZqa3STkjQquDGQlEarpjQTA7JzS52HfzXBmOXr-rosGmgRb-JudDWaGY4k71U7KQu-BgDlvk61CsI25yz_Id0_ks6_yGd70n3put9_uZ9hcXB8se1F1ztBDUi_ktkqRR9fwO-44GN</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Lin, Qing</creator><creator>Tan, Weimin</creator><creator>Cai, Shilun</creator><creator>Yan, Bo</creator><creator>Li, Jichun</creator><creator>Zhong, Yunshi</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3808-3492</orcidid><orcidid>https://orcid.org/0000-0003-4906-8244</orcidid><orcidid>https://orcid.org/0000-0003-0256-9682</orcidid><orcidid>https://orcid.org/0000-0001-7677-4772</orcidid></search><sort><creationdate>20240801</creationdate><title>Lesion-Decoupling-Based Segmentation With Large-Scale Colon and Esophageal Datasets for Early Cancer Diagnosis</title><author>Lin, Qing ; Tan, Weimin ; Cai, Shilun ; Yan, Bo ; Li, Jichun ; Zhong, Yunshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-f49af7225678f45e3b93a34261eec67c48934937947c23a74d189adf81402703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Cancer</topic><topic>Colon - diagnostic imaging</topic><topic>Colon - pathology</topic><topic>Colonic Neoplasms - diagnosis</topic><topic>Colonic Neoplasms - diagnostic imaging</topic><topic>Colonoscopy</topic><topic>Colonoscopy - methods</topic><topic>Databases, Factual</topic><topic>Dataset</topic><topic>Early Detection of Cancer - methods</topic><topic>Esophageal Neoplasms - diagnosis</topic><topic>Esophageal Neoplasms - diagnostic imaging</topic><topic>feature separation</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>lesion-decoupling segmentation</topic><topic>Lesions</topic><topic>Medical diagnostic imaging</topic><topic>Medical services</topic><topic>multimodal</topic><topic>Narrow Band Imaging - methods</topic><topic>Neural Networks, Computer</topic><topic>self-sampling similar feature disentangling</topic><toplevel>online_resources</toplevel><creatorcontrib>Lin, Qing</creatorcontrib><creatorcontrib>Tan, Weimin</creatorcontrib><creatorcontrib>Cai, Shilun</creatorcontrib><creatorcontrib>Yan, Bo</creatorcontrib><creatorcontrib>Li, Jichun</creatorcontrib><creatorcontrib>Zhong, Yunshi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lin, Qing</au><au>Tan, Weimin</au><au>Cai, Shilun</au><au>Yan, Bo</au><au>Li, Jichun</au><au>Zhong, Yunshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lesion-Decoupling-Based Segmentation With Large-Scale Colon and Esophageal Datasets for Early Cancer Diagnosis</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>35</volume><issue>8</issue><spage>11142</spage><epage>11156</epage><pages>11142-11156</pages><issn>2162-237X</issn><issn>2162-2388</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Lesions of early cancers often show flat, small, and isochromatic characteristics in medical endoscopy images, which are difficult to be captured. By analyzing the differences between the internal and external features of the lesion area, we propose a lesion-decoupling-based segmentation (LDS) network for assisting early cancer diagnosis. We introduce a plug-and-play module called self-sampling similar feature disentangling module (FDM) to obtain accurate lesion boundaries. Then, we propose a feature separation loss (FSL) function to separate pathological features from normal ones. Moreover, since physicians make diagnoses with multimodal data, we propose a multimodal cooperative segmentation network with two different modal images as input: white-light images (WLIs) and narrowband images (NBIs). Our FDM and FSL show a good performance for both single-modal and multimodal segmentations. Extensive experiments on five backbones prove that our FDM and FSL can be easily applied to different backbones for a significant lesion segmentation accuracy improvement, and the maximum increase of mean Intersection over Union (mIoU) is 4.58. For colonoscopy, we can achieve up to mIoU of 91.49 on our Dataset A and 84.41 on the three public datasets. For esophagoscopy, mIoU of 64.32 is best achieved on the WLI dataset and 66.31 on the NBI dataset.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37028330</pmid><doi>10.1109/TNNLS.2023.3248804</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3808-3492</orcidid><orcidid>https://orcid.org/0000-0003-4906-8244</orcidid><orcidid>https://orcid.org/0000-0003-0256-9682</orcidid><orcidid>https://orcid.org/0000-0001-7677-4772</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2024-08, Vol.35 (8), p.11142-11156
issn 2162-237X
2162-2388
2162-2388
language eng
recordid cdi_crossref_primary_10_1109_TNNLS_2023_3248804
source IEEE Electronic Library (IEL)
subjects Algorithms
Cancer
Colon - diagnostic imaging
Colon - pathology
Colonic Neoplasms - diagnosis
Colonic Neoplasms - diagnostic imaging
Colonoscopy
Colonoscopy - methods
Databases, Factual
Dataset
Early Detection of Cancer - methods
Esophageal Neoplasms - diagnosis
Esophageal Neoplasms - diagnostic imaging
feature separation
Hospitals
Humans
Image Interpretation, Computer-Assisted - methods
Image Processing, Computer-Assisted - methods
Image segmentation
lesion-decoupling segmentation
Lesions
Medical diagnostic imaging
Medical services
multimodal
Narrow Band Imaging - methods
Neural Networks, Computer
self-sampling similar feature disentangling
title Lesion-Decoupling-Based Segmentation With Large-Scale Colon and Esophageal Datasets for Early Cancer Diagnosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A28%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lesion-Decoupling-Based%20Segmentation%20With%20Large-Scale%20Colon%20and%20Esophageal%20Datasets%20for%20Early%20Cancer%20Diagnosis&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Lin,%20Qing&rft.date=2024-08-01&rft.volume=35&rft.issue=8&rft.spage=11142&rft.epage=11156&rft.pages=11142-11156&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2023.3248804&rft_dat=%3Cproquest_RIE%3E2798708103%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2798708103&rft_id=info:pmid/37028330&rft_ieee_id=10063232&rfr_iscdi=true