PMSGAN: Parallel Multistage GANs for Face Image Translation
In this article, we address the face image translation task, which aims to translate a face image of a source domain to a target domain. Although significant progress has been made by recent studies, face image translation is still a challenging task because it has more strict requirements for textu...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2024-07, Vol.35 (7), p.9352-9365 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9365 |
---|---|
container_issue | 7 |
container_start_page | 9352 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 35 |
creator | Liang, Changcheng Zhu, Mingrui Wang, Nannan Yang, Heng Gao, Xinbo |
description | In this article, we address the face image translation task, which aims to translate a face image of a source domain to a target domain. Although significant progress has been made by recent studies, face image translation is still a challenging task because it has more strict requirements for texture details: even a few artifacts will greatly affect the impression of generated face images. Targeting to synthesize high-quality face images with admirable visual appearance, we revisit the coarse-to-fine strategy and propose a novel p arallel m ultistage architecture on the basis of g enerative a dversarial n etworks (PMSGAN). More specifically, PMSGAN progressively learns the translation function by disintegrating the general synthesis process into multiple parallel stages that take images with gradually decreasing spatial resolution as inputs. To prompt the information exchange between various stages, a cross-stage atrous spatial pyramid (CSASP) structure is specially designed to receive and fuse the contextual information from other stages. At the end of the parallel model, we introduce a novel attention-based module that leverages multistage decoded outputs as in situ supervised attention to refine the final activations and yield the target image. Extensive experiments on several face image translation benchmarks show that PMSGAN performs considerably better than state-of-the-art approaches. |
doi_str_mv | 10.1109/TNNLS.2022.3233025 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNNLS_2022_3233025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10014017</ieee_id><sourcerecordid>2797147005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-ad516d86687b79cd2e5123b31f04db3993ca20f5eb319659410faeb35e34b7083</originalsourceid><addsrcrecordid>eNpdkEFLwzAUx4Mobsx9AREpePHS-ZI0SaOnMdwcbHOwCd5C2qbS0bUzaQ9-ezM3h5hL8l5-78_jh9A1hgHGIB_Wi8VsNSBAyIASSoGwM9QlmJOQ0Dg-P73Fewf1nduAPxwYj-Ql6lABOOYR66Kn5Xw1GS4eg6W2uixNGczbsilcoz9M4D9ckNc2GOvUBNPtvre2unKlboq6ukIXuS6d6R_vHnobP69HL-HsdTIdDWdhSmLShDpjmGcx57FIhEwzYhgmNKE4hyhLqJQ01QRyZnxLciYjDLn2BTM0SgTEtIfuD7k7W3-2xjVqW7jUlKWuTN06RYQUOBIAzKN3_9BN3drKb6coiBgkk5R7ihyo1NbOWZOrnS222n4pDGpvV_3YVXu76mjXD90eo9tka7LTyK9LD9wcgMIY8ycRcARY0G-HKXp7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078095936</pqid></control><display><type>article</type><title>PMSGAN: Parallel Multistage GANs for Face Image Translation</title><source>IEEE Electronic Library (IEL)</source><creator>Liang, Changcheng ; Zhu, Mingrui ; Wang, Nannan ; Yang, Heng ; Gao, Xinbo</creator><creatorcontrib>Liang, Changcheng ; Zhu, Mingrui ; Wang, Nannan ; Yang, Heng ; Gao, Xinbo</creatorcontrib><description>In this article, we address the face image translation task, which aims to translate a face image of a source domain to a target domain. Although significant progress has been made by recent studies, face image translation is still a challenging task because it has more strict requirements for texture details: even a few artifacts will greatly affect the impression of generated face images. Targeting to synthesize high-quality face images with admirable visual appearance, we revisit the coarse-to-fine strategy and propose a novel p arallel m ultistage architecture on the basis of g enerative a dversarial n etworks (PMSGAN). More specifically, PMSGAN progressively learns the translation function by disintegrating the general synthesis process into multiple parallel stages that take images with gradually decreasing spatial resolution as inputs. To prompt the information exchange between various stages, a cross-stage atrous spatial pyramid (CSASP) structure is specially designed to receive and fuse the contextual information from other stages. At the end of the parallel model, we introduce a novel attention-based module that leverages multistage decoded outputs as in situ supervised attention to refine the final activations and yield the target image. Extensive experiments on several face image translation benchmarks show that PMSGAN performs considerably better than state-of-the-art approaches.</description><identifier>ISSN: 2162-237X</identifier><identifier>ISSN: 2162-2388</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2022.3233025</identifier><identifier>PMID: 37018645</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Atrous spatial pyramid ; Benchmarks ; Decoding ; Disintegration ; Face ; Face detection ; face image translation ; Generative adversarial networks ; Image analysis ; Image quality ; Information processing ; parallel multistage ; Spatial discrimination ; Spatial resolution ; Training ; Translation ; Visual tasks</subject><ispartof>IEEE transaction on neural networks and learning systems, 2024-07, Vol.35 (7), p.9352-9365</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c282t-ad516d86687b79cd2e5123b31f04db3993ca20f5eb319659410faeb35e34b7083</citedby><cites>FETCH-LOGICAL-c282t-ad516d86687b79cd2e5123b31f04db3993ca20f5eb319659410faeb35e34b7083</cites><orcidid>0000-0002-4179-7701 ; 0000-0002-4695-6134 ; 0000-0002-7985-0037</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10014017$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10014017$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37018645$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Changcheng</creatorcontrib><creatorcontrib>Zhu, Mingrui</creatorcontrib><creatorcontrib>Wang, Nannan</creatorcontrib><creatorcontrib>Yang, Heng</creatorcontrib><creatorcontrib>Gao, Xinbo</creatorcontrib><title>PMSGAN: Parallel Multistage GANs for Face Image Translation</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>In this article, we address the face image translation task, which aims to translate a face image of a source domain to a target domain. Although significant progress has been made by recent studies, face image translation is still a challenging task because it has more strict requirements for texture details: even a few artifacts will greatly affect the impression of generated face images. Targeting to synthesize high-quality face images with admirable visual appearance, we revisit the coarse-to-fine strategy and propose a novel p arallel m ultistage architecture on the basis of g enerative a dversarial n etworks (PMSGAN). More specifically, PMSGAN progressively learns the translation function by disintegrating the general synthesis process into multiple parallel stages that take images with gradually decreasing spatial resolution as inputs. To prompt the information exchange between various stages, a cross-stage atrous spatial pyramid (CSASP) structure is specially designed to receive and fuse the contextual information from other stages. At the end of the parallel model, we introduce a novel attention-based module that leverages multistage decoded outputs as in situ supervised attention to refine the final activations and yield the target image. Extensive experiments on several face image translation benchmarks show that PMSGAN performs considerably better than state-of-the-art approaches.</description><subject>Atrous spatial pyramid</subject><subject>Benchmarks</subject><subject>Decoding</subject><subject>Disintegration</subject><subject>Face</subject><subject>Face detection</subject><subject>face image translation</subject><subject>Generative adversarial networks</subject><subject>Image analysis</subject><subject>Image quality</subject><subject>Information processing</subject><subject>parallel multistage</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Training</subject><subject>Translation</subject><subject>Visual tasks</subject><issn>2162-237X</issn><issn>2162-2388</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEFLwzAUx4Mobsx9AREpePHS-ZI0SaOnMdwcbHOwCd5C2qbS0bUzaQ9-ezM3h5hL8l5-78_jh9A1hgHGIB_Wi8VsNSBAyIASSoGwM9QlmJOQ0Dg-P73Fewf1nduAPxwYj-Ql6lABOOYR66Kn5Xw1GS4eg6W2uixNGczbsilcoz9M4D9ckNc2GOvUBNPtvre2unKlboq6ukIXuS6d6R_vHnobP69HL-HsdTIdDWdhSmLShDpjmGcx57FIhEwzYhgmNKE4hyhLqJQ01QRyZnxLciYjDLn2BTM0SgTEtIfuD7k7W3-2xjVqW7jUlKWuTN06RYQUOBIAzKN3_9BN3drKb6coiBgkk5R7ihyo1NbOWZOrnS222n4pDGpvV_3YVXu76mjXD90eo9tka7LTyK9LD9wcgMIY8ycRcARY0G-HKXp7</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Liang, Changcheng</creator><creator>Zhu, Mingrui</creator><creator>Wang, Nannan</creator><creator>Yang, Heng</creator><creator>Gao, Xinbo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4179-7701</orcidid><orcidid>https://orcid.org/0000-0002-4695-6134</orcidid><orcidid>https://orcid.org/0000-0002-7985-0037</orcidid></search><sort><creationdate>20240701</creationdate><title>PMSGAN: Parallel Multistage GANs for Face Image Translation</title><author>Liang, Changcheng ; Zhu, Mingrui ; Wang, Nannan ; Yang, Heng ; Gao, Xinbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-ad516d86687b79cd2e5123b31f04db3993ca20f5eb319659410faeb35e34b7083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atrous spatial pyramid</topic><topic>Benchmarks</topic><topic>Decoding</topic><topic>Disintegration</topic><topic>Face</topic><topic>Face detection</topic><topic>face image translation</topic><topic>Generative adversarial networks</topic><topic>Image analysis</topic><topic>Image quality</topic><topic>Information processing</topic><topic>parallel multistage</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Training</topic><topic>Translation</topic><topic>Visual tasks</topic><toplevel>online_resources</toplevel><creatorcontrib>Liang, Changcheng</creatorcontrib><creatorcontrib>Zhu, Mingrui</creatorcontrib><creatorcontrib>Wang, Nannan</creatorcontrib><creatorcontrib>Yang, Heng</creatorcontrib><creatorcontrib>Gao, Xinbo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liang, Changcheng</au><au>Zhu, Mingrui</au><au>Wang, Nannan</au><au>Yang, Heng</au><au>Gao, Xinbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PMSGAN: Parallel Multistage GANs for Face Image Translation</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>35</volume><issue>7</issue><spage>9352</spage><epage>9365</epage><pages>9352-9365</pages><issn>2162-237X</issn><issn>2162-2388</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>In this article, we address the face image translation task, which aims to translate a face image of a source domain to a target domain. Although significant progress has been made by recent studies, face image translation is still a challenging task because it has more strict requirements for texture details: even a few artifacts will greatly affect the impression of generated face images. Targeting to synthesize high-quality face images with admirable visual appearance, we revisit the coarse-to-fine strategy and propose a novel p arallel m ultistage architecture on the basis of g enerative a dversarial n etworks (PMSGAN). More specifically, PMSGAN progressively learns the translation function by disintegrating the general synthesis process into multiple parallel stages that take images with gradually decreasing spatial resolution as inputs. To prompt the information exchange between various stages, a cross-stage atrous spatial pyramid (CSASP) structure is specially designed to receive and fuse the contextual information from other stages. At the end of the parallel model, we introduce a novel attention-based module that leverages multistage decoded outputs as in situ supervised attention to refine the final activations and yield the target image. Extensive experiments on several face image translation benchmarks show that PMSGAN performs considerably better than state-of-the-art approaches.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37018645</pmid><doi>10.1109/TNNLS.2022.3233025</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4179-7701</orcidid><orcidid>https://orcid.org/0000-0002-4695-6134</orcidid><orcidid>https://orcid.org/0000-0002-7985-0037</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2024-07, Vol.35 (7), p.9352-9365 |
issn | 2162-237X 2162-2388 2162-2388 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TNNLS_2022_3233025 |
source | IEEE Electronic Library (IEL) |
subjects | Atrous spatial pyramid Benchmarks Decoding Disintegration Face Face detection face image translation Generative adversarial networks Image analysis Image quality Information processing parallel multistage Spatial discrimination Spatial resolution Training Translation Visual tasks |
title | PMSGAN: Parallel Multistage GANs for Face Image Translation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A49%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PMSGAN:%20Parallel%20Multistage%20GANs%20for%20Face%20Image%20Translation&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Liang,%20Changcheng&rft.date=2024-07-01&rft.volume=35&rft.issue=7&rft.spage=9352&rft.epage=9365&rft.pages=9352-9365&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2022.3233025&rft_dat=%3Cproquest_RIE%3E2797147005%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3078095936&rft_id=info:pmid/37018645&rft_ieee_id=10014017&rfr_iscdi=true |