Fixed-Time Stability of Nonlinear Impulsive Systems and its Application to Inertial Neural Networks

This article is concerned with the fixed-time stability (FTS) problem of nonlinear impulsive systems (NISs). By means of the impulsive control mechanism and Lyapunov functions theory, several sufficient conditions are established to ensure the FTS of general NISs. Meanwhile, some novel impulse-depen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2024-02, Vol.35 (2), p.1872-1883
Hauptverfasser: Hua, Lanfeng, Zhu, Hong, Zhong, Shouming, Zhang, Yuping, Shi, Kaibo, Kwon, Oh-Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1883
container_issue 2
container_start_page 1872
container_title IEEE transaction on neural networks and learning systems
container_volume 35
creator Hua, Lanfeng
Zhu, Hong
Zhong, Shouming
Zhang, Yuping
Shi, Kaibo
Kwon, Oh-Min
description This article is concerned with the fixed-time stability (FTS) problem of nonlinear impulsive systems (NISs). By means of the impulsive control mechanism and Lyapunov functions theory, several sufficient conditions are established to ensure the FTS of general NISs. Meanwhile, some novel impulse-dependent settling-time estimation schemes are developed, which fully considers the influence of stabilizing impulses and destabilizing impulses on the convergence rate of the system states. The proposed schemes establish a quantitative relationship between the upper bound of the settling time and impulse effects. It shows that stabilizing impulses can accelerate the convergence rate of the system states and leads to the upper bound of the settling time being smaller. Conversely, destabilizing impulses can reduce it and make the upper bound of the settling time larger. Then, the theoretical results are applied to delayed inertial neural networks (DINNs), where two kinds of controllers are designed to realize fixed-time synchronization of the considered systems in the impulse sense. Finally, some numerical examples are provided to illustrate the validity of the proposed theoretical results.
doi_str_mv 10.1109/TNNLS.2022.3185664
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNNLS_2022_3185664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9810995</ieee_id><sourcerecordid>2682783263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-4e647d309245ee70e4d76456af5e4d8d898b2457b68cf3f168bff1b5d7b0619b3</originalsourceid><addsrcrecordid>eNpdkU1r3DAQhkVpacI2f6CFIuilF2_1YX0dQ2jShWV7yBZ6E7I9BqW25Upy2v33UbLbPXQu78A88zLMi9B7StaUEvNlv9tt79eMMLbmVAsp61foklHJKsa1fn3u1c8LdJXSAykliZC1eYsuuFCKKmUuUXvr_0JX7f0I-D67xg8-H3Do8S5Mg5_ARbwZ52VI_rEAh5RhTNhNHfY54et5Hnzrsg8TzgFvJojZuwHvYIkvkv-E-Cu9Q296NyS4OukK_bj9ur_5Vm2_321urrdVywXNVQ2yVh0nhtUCQBGoOyVrIV0vSqs7bXRTRqqRuu15T6Vu-p42olMNkdQ0fIU-H33nGH4vkLIdfWphGNwEYUmWSc2U5kzygn76D30IS5zKdZYZxikVtMgKsSPVxpBShN7O0Y8uHiwl9jkF-5KCfU7BnlIoSx9P1kszQnde-ffzAnw4Ah4AzmOji58R_AkCkotW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923115192</pqid></control><display><type>article</type><title>Fixed-Time Stability of Nonlinear Impulsive Systems and its Application to Inertial Neural Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Hua, Lanfeng ; Zhu, Hong ; Zhong, Shouming ; Zhang, Yuping ; Shi, Kaibo ; Kwon, Oh-Min</creator><creatorcontrib>Hua, Lanfeng ; Zhu, Hong ; Zhong, Shouming ; Zhang, Yuping ; Shi, Kaibo ; Kwon, Oh-Min</creatorcontrib><description>This article is concerned with the fixed-time stability (FTS) problem of nonlinear impulsive systems (NISs). By means of the impulsive control mechanism and Lyapunov functions theory, several sufficient conditions are established to ensure the FTS of general NISs. Meanwhile, some novel impulse-dependent settling-time estimation schemes are developed, which fully considers the influence of stabilizing impulses and destabilizing impulses on the convergence rate of the system states. The proposed schemes establish a quantitative relationship between the upper bound of the settling time and impulse effects. It shows that stabilizing impulses can accelerate the convergence rate of the system states and leads to the upper bound of the settling time being smaller. Conversely, destabilizing impulses can reduce it and make the upper bound of the settling time larger. Then, the theoretical results are applied to delayed inertial neural networks (DINNs), where two kinds of controllers are designed to realize fixed-time synchronization of the considered systems in the impulse sense. Finally, some numerical examples are provided to illustrate the validity of the proposed theoretical results.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2022.3185664</identifier><identifier>PMID: 35771779</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Asymptotic stability ; Convergence ; Delayed inertial neural networks (DINNs) ; Delays ; fixed-time stability (FTS) ; Impulses ; impulsive control mechanism ; Liapunov functions ; Lyapunov theorems ; Neural networks ; nonlinear impulsive systems (NISs) ; Nonlinear systems ; Settling ; Stability ; Stability criteria ; Synchronization ; Time dependence ; Time synchronization ; Upper bound ; Upper bounds</subject><ispartof>IEEE transaction on neural networks and learning systems, 2024-02, Vol.35 (2), p.1872-1883</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-4e647d309245ee70e4d76456af5e4d8d898b2457b68cf3f168bff1b5d7b0619b3</citedby><cites>FETCH-LOGICAL-c351t-4e647d309245ee70e4d76456af5e4d8d898b2457b68cf3f168bff1b5d7b0619b3</cites><orcidid>0000-0002-4777-7912 ; 0000-0002-9863-9229 ; 0000-0002-5891-8549 ; 0009-0004-3628-8541 ; 0000-0001-8157-2200 ; 0000-0002-0334-6117</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9810995$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9810995$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35771779$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hua, Lanfeng</creatorcontrib><creatorcontrib>Zhu, Hong</creatorcontrib><creatorcontrib>Zhong, Shouming</creatorcontrib><creatorcontrib>Zhang, Yuping</creatorcontrib><creatorcontrib>Shi, Kaibo</creatorcontrib><creatorcontrib>Kwon, Oh-Min</creatorcontrib><title>Fixed-Time Stability of Nonlinear Impulsive Systems and its Application to Inertial Neural Networks</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>This article is concerned with the fixed-time stability (FTS) problem of nonlinear impulsive systems (NISs). By means of the impulsive control mechanism and Lyapunov functions theory, several sufficient conditions are established to ensure the FTS of general NISs. Meanwhile, some novel impulse-dependent settling-time estimation schemes are developed, which fully considers the influence of stabilizing impulses and destabilizing impulses on the convergence rate of the system states. The proposed schemes establish a quantitative relationship between the upper bound of the settling time and impulse effects. It shows that stabilizing impulses can accelerate the convergence rate of the system states and leads to the upper bound of the settling time being smaller. Conversely, destabilizing impulses can reduce it and make the upper bound of the settling time larger. Then, the theoretical results are applied to delayed inertial neural networks (DINNs), where two kinds of controllers are designed to realize fixed-time synchronization of the considered systems in the impulse sense. Finally, some numerical examples are provided to illustrate the validity of the proposed theoretical results.</description><subject>Artificial neural networks</subject><subject>Asymptotic stability</subject><subject>Convergence</subject><subject>Delayed inertial neural networks (DINNs)</subject><subject>Delays</subject><subject>fixed-time stability (FTS)</subject><subject>Impulses</subject><subject>impulsive control mechanism</subject><subject>Liapunov functions</subject><subject>Lyapunov theorems</subject><subject>Neural networks</subject><subject>nonlinear impulsive systems (NISs)</subject><subject>Nonlinear systems</subject><subject>Settling</subject><subject>Stability</subject><subject>Stability criteria</subject><subject>Synchronization</subject><subject>Time dependence</subject><subject>Time synchronization</subject><subject>Upper bound</subject><subject>Upper bounds</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1r3DAQhkVpacI2f6CFIuilF2_1YX0dQ2jShWV7yBZ6E7I9BqW25Upy2v33UbLbPXQu78A88zLMi9B7StaUEvNlv9tt79eMMLbmVAsp61foklHJKsa1fn3u1c8LdJXSAykliZC1eYsuuFCKKmUuUXvr_0JX7f0I-D67xg8-H3Do8S5Mg5_ARbwZ52VI_rEAh5RhTNhNHfY54et5Hnzrsg8TzgFvJojZuwHvYIkvkv-E-Cu9Q296NyS4OukK_bj9ur_5Vm2_321urrdVywXNVQ2yVh0nhtUCQBGoOyVrIV0vSqs7bXRTRqqRuu15T6Vu-p42olMNkdQ0fIU-H33nGH4vkLIdfWphGNwEYUmWSc2U5kzygn76D30IS5zKdZYZxikVtMgKsSPVxpBShN7O0Y8uHiwl9jkF-5KCfU7BnlIoSx9P1kszQnde-ffzAnw4Ah4AzmOji58R_AkCkotW</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Hua, Lanfeng</creator><creator>Zhu, Hong</creator><creator>Zhong, Shouming</creator><creator>Zhang, Yuping</creator><creator>Shi, Kaibo</creator><creator>Kwon, Oh-Min</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4777-7912</orcidid><orcidid>https://orcid.org/0000-0002-9863-9229</orcidid><orcidid>https://orcid.org/0000-0002-5891-8549</orcidid><orcidid>https://orcid.org/0009-0004-3628-8541</orcidid><orcidid>https://orcid.org/0000-0001-8157-2200</orcidid><orcidid>https://orcid.org/0000-0002-0334-6117</orcidid></search><sort><creationdate>20240201</creationdate><title>Fixed-Time Stability of Nonlinear Impulsive Systems and its Application to Inertial Neural Networks</title><author>Hua, Lanfeng ; Zhu, Hong ; Zhong, Shouming ; Zhang, Yuping ; Shi, Kaibo ; Kwon, Oh-Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-4e647d309245ee70e4d76456af5e4d8d898b2457b68cf3f168bff1b5d7b0619b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Asymptotic stability</topic><topic>Convergence</topic><topic>Delayed inertial neural networks (DINNs)</topic><topic>Delays</topic><topic>fixed-time stability (FTS)</topic><topic>Impulses</topic><topic>impulsive control mechanism</topic><topic>Liapunov functions</topic><topic>Lyapunov theorems</topic><topic>Neural networks</topic><topic>nonlinear impulsive systems (NISs)</topic><topic>Nonlinear systems</topic><topic>Settling</topic><topic>Stability</topic><topic>Stability criteria</topic><topic>Synchronization</topic><topic>Time dependence</topic><topic>Time synchronization</topic><topic>Upper bound</topic><topic>Upper bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Hua, Lanfeng</creatorcontrib><creatorcontrib>Zhu, Hong</creatorcontrib><creatorcontrib>Zhong, Shouming</creatorcontrib><creatorcontrib>Zhang, Yuping</creatorcontrib><creatorcontrib>Shi, Kaibo</creatorcontrib><creatorcontrib>Kwon, Oh-Min</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hua, Lanfeng</au><au>Zhu, Hong</au><au>Zhong, Shouming</au><au>Zhang, Yuping</au><au>Shi, Kaibo</au><au>Kwon, Oh-Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fixed-Time Stability of Nonlinear Impulsive Systems and its Application to Inertial Neural Networks</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>35</volume><issue>2</issue><spage>1872</spage><epage>1883</epage><pages>1872-1883</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>This article is concerned with the fixed-time stability (FTS) problem of nonlinear impulsive systems (NISs). By means of the impulsive control mechanism and Lyapunov functions theory, several sufficient conditions are established to ensure the FTS of general NISs. Meanwhile, some novel impulse-dependent settling-time estimation schemes are developed, which fully considers the influence of stabilizing impulses and destabilizing impulses on the convergence rate of the system states. The proposed schemes establish a quantitative relationship between the upper bound of the settling time and impulse effects. It shows that stabilizing impulses can accelerate the convergence rate of the system states and leads to the upper bound of the settling time being smaller. Conversely, destabilizing impulses can reduce it and make the upper bound of the settling time larger. Then, the theoretical results are applied to delayed inertial neural networks (DINNs), where two kinds of controllers are designed to realize fixed-time synchronization of the considered systems in the impulse sense. Finally, some numerical examples are provided to illustrate the validity of the proposed theoretical results.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35771779</pmid><doi>10.1109/TNNLS.2022.3185664</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4777-7912</orcidid><orcidid>https://orcid.org/0000-0002-9863-9229</orcidid><orcidid>https://orcid.org/0000-0002-5891-8549</orcidid><orcidid>https://orcid.org/0009-0004-3628-8541</orcidid><orcidid>https://orcid.org/0000-0001-8157-2200</orcidid><orcidid>https://orcid.org/0000-0002-0334-6117</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2024-02, Vol.35 (2), p.1872-1883
issn 2162-237X
2162-2388
language eng
recordid cdi_crossref_primary_10_1109_TNNLS_2022_3185664
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Asymptotic stability
Convergence
Delayed inertial neural networks (DINNs)
Delays
fixed-time stability (FTS)
Impulses
impulsive control mechanism
Liapunov functions
Lyapunov theorems
Neural networks
nonlinear impulsive systems (NISs)
Nonlinear systems
Settling
Stability
Stability criteria
Synchronization
Time dependence
Time synchronization
Upper bound
Upper bounds
title Fixed-Time Stability of Nonlinear Impulsive Systems and its Application to Inertial Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T22%3A32%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fixed-Time%20Stability%20of%20Nonlinear%20Impulsive%20Systems%20and%20its%20Application%20to%20Inertial%20Neural%20Networks&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Hua,%20Lanfeng&rft.date=2024-02-01&rft.volume=35&rft.issue=2&rft.spage=1872&rft.epage=1883&rft.pages=1872-1883&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2022.3185664&rft_dat=%3Cproquest_RIE%3E2682783263%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923115192&rft_id=info:pmid/35771779&rft_ieee_id=9810995&rfr_iscdi=true