Learning a World Model With Multitimescale Memory Augmentation
Model-based reinforcement learning (RL) is regarded as a promising approach to tackle the challenges that hinder model-free RL. The success of model-based RL hinges critically on the quality of the predicted dynamic models. However, for many real-world tasks involving high-dimensional state spaces,...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2023-11, Vol.34 (11), p.8493-8502 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!