Pattern Formation in a Reaction-Diffusion BAM Neural Network With Time Delay: (k1, k2) Mode Hopf-Zero Bifurcation Case

This article investigates the joint effects of connection weight and time delay on pattern formation for a delayed reaction-diffusion BAM neural network (RDBAMNN) with Neumann boundary conditions by using the ({k_{1}},{k_{2}}) mode Hopf-zero bifurcation. First, the conditions for {k_{1}} mode ze...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2022-12, Vol.33 (12), p.7266-7276
Hauptverfasser: Dong, Tao, Xiang, Weilai, Huang, Tingwen, Li, Huaqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7276
container_issue 12
container_start_page 7266
container_title IEEE transaction on neural networks and learning systems
container_volume 33
creator Dong, Tao
Xiang, Weilai
Huang, Tingwen
Li, Huaqing
description This article investigates the joint effects of connection weight and time delay on pattern formation for a delayed reaction-diffusion BAM neural network (RDBAMNN) with Neumann boundary conditions by using the ({k_{1}},{k_{2}}) mode Hopf-zero bifurcation. First, the conditions for {k_{1}} mode zero bifurcation are obtained by choosing connection weight as the bifurcation parameter. It is found that the connection weight has a great impact on the properties of steady state. With connection weight increasing, the homogeneous steady state becomes inhomogeneous, which means that the connection weight can affect the spatial stability of steady state. Then, the specified conditions for the {k_{2}} mode Hopf bifurcation and the ({k_{1}},{k_{2}}) mode Hopf-zero bifurcation are established. By using the center manifold, the third-order normal form of the Hopf-zero bifurcation is obtained. Through the analysis of the normal form, the bifurcation diagrams on two parameters' planes (connection weight and time delay) are obtained, which contains six areas. Some interesting spatial patterns are found in these areas: a homogeneous periodic solution, a homogeneous steady state, two inhomogeneous steady state, and two inhomogeneous periodic solutions.
doi_str_mv 10.1109/TNNLS.2021.3084693
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNNLS_2021_3084693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9451545</ieee_id><sourcerecordid>2742703957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-dbd458358d4dabd276799f89d889a00ff9ab7f8dda36f1556539e981a97e1fa23</originalsourceid><addsrcrecordid>eNpdkUtPGzEUha2qqCDgD8DGEhsqMamfM3Z3EKBUCimCoFZsLGd8LUwm49SeAfHvOyGIRe_mPnTO0ZU-hA4oGVFK9LfZdDq5GzHC6IgTJUrNP6EdRktWMK7U54-5-rON9nN-IkOVRJZCf0HbXNAhhJQ76PnGdh2kFl_GtLRdiC0OLbb4Fmy93orz4H2f1_ez02s8hT7ZZmjdS0wL_Dt0j3gWloDPobGv3_Hxgp7gBfuKr6MDfBVXvniAFPFZ8H2qN_ljm2EPbXnbZNh_77vo_vJiNr4qJr9-_ByfToqaSdUVbu6EVFwqJ5ydO1aVldZeaaeUtoR4r-288so5y0tPpSwl16AVtboC6i3ju-h4k7tK8W8PuTPLkGtoGttC7LNhUhBJtSB0kB79J32KfWqH7wyrBKsI17IaVGyjqlPMOYE3qxSWNr0aSswajHkDY9ZgzDuYwXS4MQUA-DBoIakUkv8DrRWFtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2742703957</pqid></control><display><type>article</type><title>Pattern Formation in a Reaction-Diffusion BAM Neural Network With Time Delay: (k1, k2) Mode Hopf-Zero Bifurcation Case</title><source>IEEE Electronic Library (IEL)</source><creator>Dong, Tao ; Xiang, Weilai ; Huang, Tingwen ; Li, Huaqing</creator><creatorcontrib>Dong, Tao ; Xiang, Weilai ; Huang, Tingwen ; Li, Huaqing</creatorcontrib><description><![CDATA[This article investigates the joint effects of connection weight and time delay on pattern formation for a delayed reaction-diffusion BAM neural network (RDBAMNN) with Neumann boundary conditions by using the <inline-formula> <tex-math notation="LaTeX">({k_{1}},{k_{2}}) </tex-math></inline-formula> mode Hopf-zero bifurcation. First, the conditions for <inline-formula> <tex-math notation="LaTeX">{k_{1}} </tex-math></inline-formula> mode zero bifurcation are obtained by choosing connection weight as the bifurcation parameter. It is found that the connection weight has a great impact on the properties of steady state. With connection weight increasing, the homogeneous steady state becomes inhomogeneous, which means that the connection weight can affect the spatial stability of steady state. Then, the specified conditions for the <inline-formula> <tex-math notation="LaTeX">{k_{2}} </tex-math></inline-formula> mode Hopf bifurcation and the <inline-formula> <tex-math notation="LaTeX">({k_{1}},{k_{2}}) </tex-math></inline-formula> mode Hopf-zero bifurcation are established. By using the center manifold, the third-order normal form of the Hopf-zero bifurcation is obtained. Through the analysis of the normal form, the bifurcation diagrams on two parameters' planes (connection weight and time delay) are obtained, which contains six areas. Some interesting spatial patterns are found in these areas: a homogeneous periodic solution, a homogeneous steady state, two inhomogeneous steady state, and two inhomogeneous periodic solutions.]]></description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2021.3084693</identifier><identifier>PMID: 34111006</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Bifurcation ; Boundary conditions ; Canonical forms ; Center manifold ; Delay effects ; Diffusion ; Hopf bifurcation ; Hopf-zero bifurcation ; Neural networks ; Neurons ; Nonhomogeneous media ; Parameters ; Pattern formation ; reaction-diffusion BAM neural network (RDBAMNN) ; Recurrent neural networks ; spatial patterns ; Steady state ; Time lag</subject><ispartof>IEEE transaction on neural networks and learning systems, 2022-12, Vol.33 (12), p.7266-7276</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c258t-dbd458358d4dabd276799f89d889a00ff9ab7f8dda36f1556539e981a97e1fa23</citedby><cites>FETCH-LOGICAL-c258t-dbd458358d4dabd276799f89d889a00ff9ab7f8dda36f1556539e981a97e1fa23</cites><orcidid>0000-0001-6310-8965 ; 0000-0003-0555-2720 ; 0000-0001-9610-846X ; 0000-0002-0067-5329</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9451545$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9451545$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dong, Tao</creatorcontrib><creatorcontrib>Xiang, Weilai</creatorcontrib><creatorcontrib>Huang, Tingwen</creatorcontrib><creatorcontrib>Li, Huaqing</creatorcontrib><title>Pattern Formation in a Reaction-Diffusion BAM Neural Network With Time Delay: (k1, k2) Mode Hopf-Zero Bifurcation Case</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><description><![CDATA[This article investigates the joint effects of connection weight and time delay on pattern formation for a delayed reaction-diffusion BAM neural network (RDBAMNN) with Neumann boundary conditions by using the <inline-formula> <tex-math notation="LaTeX">({k_{1}},{k_{2}}) </tex-math></inline-formula> mode Hopf-zero bifurcation. First, the conditions for <inline-formula> <tex-math notation="LaTeX">{k_{1}} </tex-math></inline-formula> mode zero bifurcation are obtained by choosing connection weight as the bifurcation parameter. It is found that the connection weight has a great impact on the properties of steady state. With connection weight increasing, the homogeneous steady state becomes inhomogeneous, which means that the connection weight can affect the spatial stability of steady state. Then, the specified conditions for the <inline-formula> <tex-math notation="LaTeX">{k_{2}} </tex-math></inline-formula> mode Hopf bifurcation and the <inline-formula> <tex-math notation="LaTeX">({k_{1}},{k_{2}}) </tex-math></inline-formula> mode Hopf-zero bifurcation are established. By using the center manifold, the third-order normal form of the Hopf-zero bifurcation is obtained. Through the analysis of the normal form, the bifurcation diagrams on two parameters' planes (connection weight and time delay) are obtained, which contains six areas. Some interesting spatial patterns are found in these areas: a homogeneous periodic solution, a homogeneous steady state, two inhomogeneous steady state, and two inhomogeneous periodic solutions.]]></description><subject>Bifurcation</subject><subject>Boundary conditions</subject><subject>Canonical forms</subject><subject>Center manifold</subject><subject>Delay effects</subject><subject>Diffusion</subject><subject>Hopf bifurcation</subject><subject>Hopf-zero bifurcation</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Nonhomogeneous media</subject><subject>Parameters</subject><subject>Pattern formation</subject><subject>reaction-diffusion BAM neural network (RDBAMNN)</subject><subject>Recurrent neural networks</subject><subject>spatial patterns</subject><subject>Steady state</subject><subject>Time lag</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkUtPGzEUha2qqCDgD8DGEhsqMamfM3Z3EKBUCimCoFZsLGd8LUwm49SeAfHvOyGIRe_mPnTO0ZU-hA4oGVFK9LfZdDq5GzHC6IgTJUrNP6EdRktWMK7U54-5-rON9nN-IkOVRJZCf0HbXNAhhJQ76PnGdh2kFl_GtLRdiC0OLbb4Fmy93orz4H2f1_ez02s8hT7ZZmjdS0wL_Dt0j3gWloDPobGv3_Hxgp7gBfuKr6MDfBVXvniAFPFZ8H2qN_ljm2EPbXnbZNh_77vo_vJiNr4qJr9-_ByfToqaSdUVbu6EVFwqJ5ydO1aVldZeaaeUtoR4r-288so5y0tPpSwl16AVtboC6i3ju-h4k7tK8W8PuTPLkGtoGttC7LNhUhBJtSB0kB79J32KfWqH7wyrBKsI17IaVGyjqlPMOYE3qxSWNr0aSswajHkDY9ZgzDuYwXS4MQUA-DBoIakUkv8DrRWFtg</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Dong, Tao</creator><creator>Xiang, Weilai</creator><creator>Huang, Tingwen</creator><creator>Li, Huaqing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6310-8965</orcidid><orcidid>https://orcid.org/0000-0003-0555-2720</orcidid><orcidid>https://orcid.org/0000-0001-9610-846X</orcidid><orcidid>https://orcid.org/0000-0002-0067-5329</orcidid></search><sort><creationdate>20221201</creationdate><title>Pattern Formation in a Reaction-Diffusion BAM Neural Network With Time Delay: (k1, k2) Mode Hopf-Zero Bifurcation Case</title><author>Dong, Tao ; Xiang, Weilai ; Huang, Tingwen ; Li, Huaqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-dbd458358d4dabd276799f89d889a00ff9ab7f8dda36f1556539e981a97e1fa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bifurcation</topic><topic>Boundary conditions</topic><topic>Canonical forms</topic><topic>Center manifold</topic><topic>Delay effects</topic><topic>Diffusion</topic><topic>Hopf bifurcation</topic><topic>Hopf-zero bifurcation</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Nonhomogeneous media</topic><topic>Parameters</topic><topic>Pattern formation</topic><topic>reaction-diffusion BAM neural network (RDBAMNN)</topic><topic>Recurrent neural networks</topic><topic>spatial patterns</topic><topic>Steady state</topic><topic>Time lag</topic><toplevel>online_resources</toplevel><creatorcontrib>Dong, Tao</creatorcontrib><creatorcontrib>Xiang, Weilai</creatorcontrib><creatorcontrib>Huang, Tingwen</creatorcontrib><creatorcontrib>Li, Huaqing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dong, Tao</au><au>Xiang, Weilai</au><au>Huang, Tingwen</au><au>Li, Huaqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pattern Formation in a Reaction-Diffusion BAM Neural Network With Time Delay: (k1, k2) Mode Hopf-Zero Bifurcation Case</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>33</volume><issue>12</issue><spage>7266</spage><epage>7276</epage><pages>7266-7276</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract><![CDATA[This article investigates the joint effects of connection weight and time delay on pattern formation for a delayed reaction-diffusion BAM neural network (RDBAMNN) with Neumann boundary conditions by using the <inline-formula> <tex-math notation="LaTeX">({k_{1}},{k_{2}}) </tex-math></inline-formula> mode Hopf-zero bifurcation. First, the conditions for <inline-formula> <tex-math notation="LaTeX">{k_{1}} </tex-math></inline-formula> mode zero bifurcation are obtained by choosing connection weight as the bifurcation parameter. It is found that the connection weight has a great impact on the properties of steady state. With connection weight increasing, the homogeneous steady state becomes inhomogeneous, which means that the connection weight can affect the spatial stability of steady state. Then, the specified conditions for the <inline-formula> <tex-math notation="LaTeX">{k_{2}} </tex-math></inline-formula> mode Hopf bifurcation and the <inline-formula> <tex-math notation="LaTeX">({k_{1}},{k_{2}}) </tex-math></inline-formula> mode Hopf-zero bifurcation are established. By using the center manifold, the third-order normal form of the Hopf-zero bifurcation is obtained. Through the analysis of the normal form, the bifurcation diagrams on two parameters' planes (connection weight and time delay) are obtained, which contains six areas. Some interesting spatial patterns are found in these areas: a homogeneous periodic solution, a homogeneous steady state, two inhomogeneous steady state, and two inhomogeneous periodic solutions.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><pmid>34111006</pmid><doi>10.1109/TNNLS.2021.3084693</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6310-8965</orcidid><orcidid>https://orcid.org/0000-0003-0555-2720</orcidid><orcidid>https://orcid.org/0000-0001-9610-846X</orcidid><orcidid>https://orcid.org/0000-0002-0067-5329</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2022-12, Vol.33 (12), p.7266-7276
issn 2162-237X
2162-2388
language eng
recordid cdi_crossref_primary_10_1109_TNNLS_2021_3084693
source IEEE Electronic Library (IEL)
subjects Bifurcation
Boundary conditions
Canonical forms
Center manifold
Delay effects
Diffusion
Hopf bifurcation
Hopf-zero bifurcation
Neural networks
Neurons
Nonhomogeneous media
Parameters
Pattern formation
reaction-diffusion BAM neural network (RDBAMNN)
Recurrent neural networks
spatial patterns
Steady state
Time lag
title Pattern Formation in a Reaction-Diffusion BAM Neural Network With Time Delay: (k1, k2) Mode Hopf-Zero Bifurcation Case
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A01%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pattern%20Formation%20in%20a%20Reaction-Diffusion%20BAM%20Neural%20Network%20With%20Time%20Delay:%20(k1,%20k2)%20Mode%20Hopf-Zero%20Bifurcation%20Case&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Dong,%20Tao&rft.date=2022-12-01&rft.volume=33&rft.issue=12&rft.spage=7266&rft.epage=7276&rft.pages=7266-7276&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2021.3084693&rft_dat=%3Cproquest_RIE%3E2742703957%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2742703957&rft_id=info:pmid/34111006&rft_ieee_id=9451545&rfr_iscdi=true