Skip-Connected Covariance Network for Remote Sensing Scene Classification
This paper proposes a novel end-to-end learning model, called skip-connected covariance (SCCov) network, for remote sensing scene classification (RSSC). The innovative contribution of this paper is to embed two novel modules into the traditional convolutional neural network (CNN) model, i.e., skip c...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2020-05, Vol.31 (5), p.1461-1474 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1474 |
---|---|
container_issue | 5 |
container_start_page | 1461 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 31 |
creator | He, Nanjun Fang, Leyuan Li, Shutao Plaza, Javier Plaza, Antonio |
description | This paper proposes a novel end-to-end learning model, called skip-connected covariance (SCCov) network, for remote sensing scene classification (RSSC). The innovative contribution of this paper is to embed two novel modules into the traditional convolutional neural network (CNN) model, i.e., skip connections and covariance pooling. The advantages of newly developed SCCov are twofold. First, by means of the skip connections, the multi-resolution feature maps produced by the CNN are combined together, which provides important benefits to address the presence of large-scale variance in RSSC data sets. Second, by using covariance pooling, we can fully exploit the second-order information contained in such multi-resolution feature maps. This allows the CNN to achieve more representative feature learning when dealing with RSSC problems. Experimental results, conducted using three large-scale benchmark data sets, demonstrate that our newly proposed SCCov network exhibits very competitive or superior classification performance when compared with the current state-of-the-art RSSC techniques, using a much lower amount of parameters. Specifically, our SCCov only needs 10% of the parameters used by its counterparts. |
doi_str_mv | 10.1109/TNNLS.2019.2920374 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNNLS_2019_2920374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8759970</ieee_id><sourcerecordid>2257708701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-d6c9fa7810eb4df9b05b683029f0f30390a179db8a83734d6db5b7305e8e403d3</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhoMoKqt_QEEKXrx0nSRtkxyl-AXLCq6Ct5C2U8l-JGvSVfz3dt11D85lBuZ5h-Eh5IzCkFJQ1y_j8WgyZEDVkCkGXGR75JjRgqWMS7m_m8XbETmNcQp9FZAXmTokR5wylVPGjsnjZGaXaemdw7rDJin9pwnWuBqTMXZfPsyS1ofkGRe-w2SCLlr3nkxqdJiUcxOjbW1tOuvdCTlozTzi6bYPyOvd7Uv5kI6e7h_Lm1Fa85x2aVPUqjVCUsAqa1pVQV4VkgNTLbQcuAJDhWoqaSQXPGuKpsorwSFHiRnwhg_I1ebuMviPFcZOL2yscT43Dv0qasZyIUAKoD16-Q-d-lVw_XeacSUUyKw3NyBsQ9XBxxiw1ctgFyZ8awp67Vr_utZr13rrug9dbE-vqgU2u8if2R443wAWEXdrKXKlBPAfkSeBUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397908420</pqid></control><display><type>article</type><title>Skip-Connected Covariance Network for Remote Sensing Scene Classification</title><source>IEEE/IET Electronic Library (IEL)</source><creator>He, Nanjun ; Fang, Leyuan ; Li, Shutao ; Plaza, Javier ; Plaza, Antonio</creator><creatorcontrib>He, Nanjun ; Fang, Leyuan ; Li, Shutao ; Plaza, Javier ; Plaza, Antonio</creatorcontrib><description>This paper proposes a novel end-to-end learning model, called skip-connected covariance (SCCov) network, for remote sensing scene classification (RSSC). The innovative contribution of this paper is to embed two novel modules into the traditional convolutional neural network (CNN) model, i.e., skip connections and covariance pooling. The advantages of newly developed SCCov are twofold. First, by means of the skip connections, the multi-resolution feature maps produced by the CNN are combined together, which provides important benefits to address the presence of large-scale variance in RSSC data sets. Second, by using covariance pooling, we can fully exploit the second-order information contained in such multi-resolution feature maps. This allows the CNN to achieve more representative feature learning when dealing with RSSC problems. Experimental results, conducted using three large-scale benchmark data sets, demonstrate that our newly proposed SCCov network exhibits very competitive or superior classification performance when compared with the current state-of-the-art RSSC techniques, using a much lower amount of parameters. Specifically, our SCCov only needs 10% of the parameters used by its counterparts.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2019.2920374</identifier><identifier>PMID: 31295122</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Aggregates ; Artificial neural networks ; Classification ; Computational modeling ; Covariance ; Covariance pooling ; Datasets ; deep neural network ; Feature extraction ; Feature maps ; Learning ; Learning systems ; Mathematical models ; multi-layer feature ; Neural networks ; Parameters ; Remote sensing ; scene recognition ; Training</subject><ispartof>IEEE transaction on neural networks and learning systems, 2020-05, Vol.31 (5), p.1461-1474</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-d6c9fa7810eb4df9b05b683029f0f30390a179db8a83734d6db5b7305e8e403d3</citedby><cites>FETCH-LOGICAL-c351t-d6c9fa7810eb4df9b05b683029f0f30390a179db8a83734d6db5b7305e8e403d3</cites><orcidid>0000-0002-0585-9848 ; 0000-0003-3105-6499 ; 0000-0002-9613-1659 ; 0000-0003-2351-4461 ; 0000-0002-2384-9141</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8759970$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8759970$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31295122$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Nanjun</creatorcontrib><creatorcontrib>Fang, Leyuan</creatorcontrib><creatorcontrib>Li, Shutao</creatorcontrib><creatorcontrib>Plaza, Javier</creatorcontrib><creatorcontrib>Plaza, Antonio</creatorcontrib><title>Skip-Connected Covariance Network for Remote Sensing Scene Classification</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>This paper proposes a novel end-to-end learning model, called skip-connected covariance (SCCov) network, for remote sensing scene classification (RSSC). The innovative contribution of this paper is to embed two novel modules into the traditional convolutional neural network (CNN) model, i.e., skip connections and covariance pooling. The advantages of newly developed SCCov are twofold. First, by means of the skip connections, the multi-resolution feature maps produced by the CNN are combined together, which provides important benefits to address the presence of large-scale variance in RSSC data sets. Second, by using covariance pooling, we can fully exploit the second-order information contained in such multi-resolution feature maps. This allows the CNN to achieve more representative feature learning when dealing with RSSC problems. Experimental results, conducted using three large-scale benchmark data sets, demonstrate that our newly proposed SCCov network exhibits very competitive or superior classification performance when compared with the current state-of-the-art RSSC techniques, using a much lower amount of parameters. Specifically, our SCCov only needs 10% of the parameters used by its counterparts.</description><subject>Aggregates</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Computational modeling</subject><subject>Covariance</subject><subject>Covariance pooling</subject><subject>Datasets</subject><subject>deep neural network</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>Learning</subject><subject>Learning systems</subject><subject>Mathematical models</subject><subject>multi-layer feature</subject><subject>Neural networks</subject><subject>Parameters</subject><subject>Remote sensing</subject><subject>scene recognition</subject><subject>Training</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LxDAQhoMoKqt_QEEKXrx0nSRtkxyl-AXLCq6Ct5C2U8l-JGvSVfz3dt11D85lBuZ5h-Eh5IzCkFJQ1y_j8WgyZEDVkCkGXGR75JjRgqWMS7m_m8XbETmNcQp9FZAXmTokR5wylVPGjsnjZGaXaemdw7rDJin9pwnWuBqTMXZfPsyS1ofkGRe-w2SCLlr3nkxqdJiUcxOjbW1tOuvdCTlozTzi6bYPyOvd7Uv5kI6e7h_Lm1Fa85x2aVPUqjVCUsAqa1pVQV4VkgNTLbQcuAJDhWoqaSQXPGuKpsorwSFHiRnwhg_I1ebuMviPFcZOL2yscT43Dv0qasZyIUAKoD16-Q-d-lVw_XeacSUUyKw3NyBsQ9XBxxiw1ctgFyZ8awp67Vr_utZr13rrug9dbE-vqgU2u8if2R443wAWEXdrKXKlBPAfkSeBUA</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>He, Nanjun</creator><creator>Fang, Leyuan</creator><creator>Li, Shutao</creator><creator>Plaza, Javier</creator><creator>Plaza, Antonio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0585-9848</orcidid><orcidid>https://orcid.org/0000-0003-3105-6499</orcidid><orcidid>https://orcid.org/0000-0002-9613-1659</orcidid><orcidid>https://orcid.org/0000-0003-2351-4461</orcidid><orcidid>https://orcid.org/0000-0002-2384-9141</orcidid></search><sort><creationdate>20200501</creationdate><title>Skip-Connected Covariance Network for Remote Sensing Scene Classification</title><author>He, Nanjun ; Fang, Leyuan ; Li, Shutao ; Plaza, Javier ; Plaza, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-d6c9fa7810eb4df9b05b683029f0f30390a179db8a83734d6db5b7305e8e403d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aggregates</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Computational modeling</topic><topic>Covariance</topic><topic>Covariance pooling</topic><topic>Datasets</topic><topic>deep neural network</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>Learning</topic><topic>Learning systems</topic><topic>Mathematical models</topic><topic>multi-layer feature</topic><topic>Neural networks</topic><topic>Parameters</topic><topic>Remote sensing</topic><topic>scene recognition</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>He, Nanjun</creatorcontrib><creatorcontrib>Fang, Leyuan</creatorcontrib><creatorcontrib>Li, Shutao</creatorcontrib><creatorcontrib>Plaza, Javier</creatorcontrib><creatorcontrib>Plaza, Antonio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>He, Nanjun</au><au>Fang, Leyuan</au><au>Li, Shutao</au><au>Plaza, Javier</au><au>Plaza, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Skip-Connected Covariance Network for Remote Sensing Scene Classification</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>31</volume><issue>5</issue><spage>1461</spage><epage>1474</epage><pages>1461-1474</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>This paper proposes a novel end-to-end learning model, called skip-connected covariance (SCCov) network, for remote sensing scene classification (RSSC). The innovative contribution of this paper is to embed two novel modules into the traditional convolutional neural network (CNN) model, i.e., skip connections and covariance pooling. The advantages of newly developed SCCov are twofold. First, by means of the skip connections, the multi-resolution feature maps produced by the CNN are combined together, which provides important benefits to address the presence of large-scale variance in RSSC data sets. Second, by using covariance pooling, we can fully exploit the second-order information contained in such multi-resolution feature maps. This allows the CNN to achieve more representative feature learning when dealing with RSSC problems. Experimental results, conducted using three large-scale benchmark data sets, demonstrate that our newly proposed SCCov network exhibits very competitive or superior classification performance when compared with the current state-of-the-art RSSC techniques, using a much lower amount of parameters. Specifically, our SCCov only needs 10% of the parameters used by its counterparts.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31295122</pmid><doi>10.1109/TNNLS.2019.2920374</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0585-9848</orcidid><orcidid>https://orcid.org/0000-0003-3105-6499</orcidid><orcidid>https://orcid.org/0000-0002-9613-1659</orcidid><orcidid>https://orcid.org/0000-0003-2351-4461</orcidid><orcidid>https://orcid.org/0000-0002-2384-9141</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2020-05, Vol.31 (5), p.1461-1474 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TNNLS_2019_2920374 |
source | IEEE/IET Electronic Library (IEL) |
subjects | Aggregates Artificial neural networks Classification Computational modeling Covariance Covariance pooling Datasets deep neural network Feature extraction Feature maps Learning Learning systems Mathematical models multi-layer feature Neural networks Parameters Remote sensing scene recognition Training |
title | Skip-Connected Covariance Network for Remote Sensing Scene Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A17%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Skip-Connected%20Covariance%20Network%20for%20Remote%20Sensing%20Scene%20Classification&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=He,%20Nanjun&rft.date=2020-05-01&rft.volume=31&rft.issue=5&rft.spage=1461&rft.epage=1474&rft.pages=1461-1474&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2019.2920374&rft_dat=%3Cproquest_RIE%3E2257708701%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2397908420&rft_id=info:pmid/31295122&rft_ieee_id=8759970&rfr_iscdi=true |