Skip-Connected Covariance Network for Remote Sensing Scene Classification

This paper proposes a novel end-to-end learning model, called skip-connected covariance (SCCov) network, for remote sensing scene classification (RSSC). The innovative contribution of this paper is to embed two novel modules into the traditional convolutional neural network (CNN) model, i.e., skip c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2020-05, Vol.31 (5), p.1461-1474
Hauptverfasser: He, Nanjun, Fang, Leyuan, Li, Shutao, Plaza, Javier, Plaza, Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1474
container_issue 5
container_start_page 1461
container_title IEEE transaction on neural networks and learning systems
container_volume 31
creator He, Nanjun
Fang, Leyuan
Li, Shutao
Plaza, Javier
Plaza, Antonio
description This paper proposes a novel end-to-end learning model, called skip-connected covariance (SCCov) network, for remote sensing scene classification (RSSC). The innovative contribution of this paper is to embed two novel modules into the traditional convolutional neural network (CNN) model, i.e., skip connections and covariance pooling. The advantages of newly developed SCCov are twofold. First, by means of the skip connections, the multi-resolution feature maps produced by the CNN are combined together, which provides important benefits to address the presence of large-scale variance in RSSC data sets. Second, by using covariance pooling, we can fully exploit the second-order information contained in such multi-resolution feature maps. This allows the CNN to achieve more representative feature learning when dealing with RSSC problems. Experimental results, conducted using three large-scale benchmark data sets, demonstrate that our newly proposed SCCov network exhibits very competitive or superior classification performance when compared with the current state-of-the-art RSSC techniques, using a much lower amount of parameters. Specifically, our SCCov only needs 10% of the parameters used by its counterparts.
doi_str_mv 10.1109/TNNLS.2019.2920374
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNNLS_2019_2920374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8759970</ieee_id><sourcerecordid>2257708701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-d6c9fa7810eb4df9b05b683029f0f30390a179db8a83734d6db5b7305e8e403d3</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhoMoKqt_QEEKXrx0nSRtkxyl-AXLCq6Ct5C2U8l-JGvSVfz3dt11D85lBuZ5h-Eh5IzCkFJQ1y_j8WgyZEDVkCkGXGR75JjRgqWMS7m_m8XbETmNcQp9FZAXmTokR5wylVPGjsnjZGaXaemdw7rDJin9pwnWuBqTMXZfPsyS1ofkGRe-w2SCLlr3nkxqdJiUcxOjbW1tOuvdCTlozTzi6bYPyOvd7Uv5kI6e7h_Lm1Fa85x2aVPUqjVCUsAqa1pVQV4VkgNTLbQcuAJDhWoqaSQXPGuKpsorwSFHiRnwhg_I1ebuMviPFcZOL2yscT43Dv0qasZyIUAKoD16-Q-d-lVw_XeacSUUyKw3NyBsQ9XBxxiw1ctgFyZ8awp67Vr_utZr13rrug9dbE-vqgU2u8if2R443wAWEXdrKXKlBPAfkSeBUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397908420</pqid></control><display><type>article</type><title>Skip-Connected Covariance Network for Remote Sensing Scene Classification</title><source>IEEE/IET Electronic Library (IEL)</source><creator>He, Nanjun ; Fang, Leyuan ; Li, Shutao ; Plaza, Javier ; Plaza, Antonio</creator><creatorcontrib>He, Nanjun ; Fang, Leyuan ; Li, Shutao ; Plaza, Javier ; Plaza, Antonio</creatorcontrib><description>This paper proposes a novel end-to-end learning model, called skip-connected covariance (SCCov) network, for remote sensing scene classification (RSSC). The innovative contribution of this paper is to embed two novel modules into the traditional convolutional neural network (CNN) model, i.e., skip connections and covariance pooling. The advantages of newly developed SCCov are twofold. First, by means of the skip connections, the multi-resolution feature maps produced by the CNN are combined together, which provides important benefits to address the presence of large-scale variance in RSSC data sets. Second, by using covariance pooling, we can fully exploit the second-order information contained in such multi-resolution feature maps. This allows the CNN to achieve more representative feature learning when dealing with RSSC problems. Experimental results, conducted using three large-scale benchmark data sets, demonstrate that our newly proposed SCCov network exhibits very competitive or superior classification performance when compared with the current state-of-the-art RSSC techniques, using a much lower amount of parameters. Specifically, our SCCov only needs 10% of the parameters used by its counterparts.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2019.2920374</identifier><identifier>PMID: 31295122</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Aggregates ; Artificial neural networks ; Classification ; Computational modeling ; Covariance ; Covariance pooling ; Datasets ; deep neural network ; Feature extraction ; Feature maps ; Learning ; Learning systems ; Mathematical models ; multi-layer feature ; Neural networks ; Parameters ; Remote sensing ; scene recognition ; Training</subject><ispartof>IEEE transaction on neural networks and learning systems, 2020-05, Vol.31 (5), p.1461-1474</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-d6c9fa7810eb4df9b05b683029f0f30390a179db8a83734d6db5b7305e8e403d3</citedby><cites>FETCH-LOGICAL-c351t-d6c9fa7810eb4df9b05b683029f0f30390a179db8a83734d6db5b7305e8e403d3</cites><orcidid>0000-0002-0585-9848 ; 0000-0003-3105-6499 ; 0000-0002-9613-1659 ; 0000-0003-2351-4461 ; 0000-0002-2384-9141</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8759970$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8759970$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31295122$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Nanjun</creatorcontrib><creatorcontrib>Fang, Leyuan</creatorcontrib><creatorcontrib>Li, Shutao</creatorcontrib><creatorcontrib>Plaza, Javier</creatorcontrib><creatorcontrib>Plaza, Antonio</creatorcontrib><title>Skip-Connected Covariance Network for Remote Sensing Scene Classification</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>This paper proposes a novel end-to-end learning model, called skip-connected covariance (SCCov) network, for remote sensing scene classification (RSSC). The innovative contribution of this paper is to embed two novel modules into the traditional convolutional neural network (CNN) model, i.e., skip connections and covariance pooling. The advantages of newly developed SCCov are twofold. First, by means of the skip connections, the multi-resolution feature maps produced by the CNN are combined together, which provides important benefits to address the presence of large-scale variance in RSSC data sets. Second, by using covariance pooling, we can fully exploit the second-order information contained in such multi-resolution feature maps. This allows the CNN to achieve more representative feature learning when dealing with RSSC problems. Experimental results, conducted using three large-scale benchmark data sets, demonstrate that our newly proposed SCCov network exhibits very competitive or superior classification performance when compared with the current state-of-the-art RSSC techniques, using a much lower amount of parameters. Specifically, our SCCov only needs 10% of the parameters used by its counterparts.</description><subject>Aggregates</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Computational modeling</subject><subject>Covariance</subject><subject>Covariance pooling</subject><subject>Datasets</subject><subject>deep neural network</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>Learning</subject><subject>Learning systems</subject><subject>Mathematical models</subject><subject>multi-layer feature</subject><subject>Neural networks</subject><subject>Parameters</subject><subject>Remote sensing</subject><subject>scene recognition</subject><subject>Training</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LxDAQhoMoKqt_QEEKXrx0nSRtkxyl-AXLCq6Ct5C2U8l-JGvSVfz3dt11D85lBuZ5h-Eh5IzCkFJQ1y_j8WgyZEDVkCkGXGR75JjRgqWMS7m_m8XbETmNcQp9FZAXmTokR5wylVPGjsnjZGaXaemdw7rDJin9pwnWuBqTMXZfPsyS1ofkGRe-w2SCLlr3nkxqdJiUcxOjbW1tOuvdCTlozTzi6bYPyOvd7Uv5kI6e7h_Lm1Fa85x2aVPUqjVCUsAqa1pVQV4VkgNTLbQcuAJDhWoqaSQXPGuKpsorwSFHiRnwhg_I1ebuMviPFcZOL2yscT43Dv0qasZyIUAKoD16-Q-d-lVw_XeacSUUyKw3NyBsQ9XBxxiw1ctgFyZ8awp67Vr_utZr13rrug9dbE-vqgU2u8if2R443wAWEXdrKXKlBPAfkSeBUA</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>He, Nanjun</creator><creator>Fang, Leyuan</creator><creator>Li, Shutao</creator><creator>Plaza, Javier</creator><creator>Plaza, Antonio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0585-9848</orcidid><orcidid>https://orcid.org/0000-0003-3105-6499</orcidid><orcidid>https://orcid.org/0000-0002-9613-1659</orcidid><orcidid>https://orcid.org/0000-0003-2351-4461</orcidid><orcidid>https://orcid.org/0000-0002-2384-9141</orcidid></search><sort><creationdate>20200501</creationdate><title>Skip-Connected Covariance Network for Remote Sensing Scene Classification</title><author>He, Nanjun ; Fang, Leyuan ; Li, Shutao ; Plaza, Javier ; Plaza, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-d6c9fa7810eb4df9b05b683029f0f30390a179db8a83734d6db5b7305e8e403d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aggregates</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Computational modeling</topic><topic>Covariance</topic><topic>Covariance pooling</topic><topic>Datasets</topic><topic>deep neural network</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>Learning</topic><topic>Learning systems</topic><topic>Mathematical models</topic><topic>multi-layer feature</topic><topic>Neural networks</topic><topic>Parameters</topic><topic>Remote sensing</topic><topic>scene recognition</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>He, Nanjun</creatorcontrib><creatorcontrib>Fang, Leyuan</creatorcontrib><creatorcontrib>Li, Shutao</creatorcontrib><creatorcontrib>Plaza, Javier</creatorcontrib><creatorcontrib>Plaza, Antonio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>He, Nanjun</au><au>Fang, Leyuan</au><au>Li, Shutao</au><au>Plaza, Javier</au><au>Plaza, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Skip-Connected Covariance Network for Remote Sensing Scene Classification</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>31</volume><issue>5</issue><spage>1461</spage><epage>1474</epage><pages>1461-1474</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>This paper proposes a novel end-to-end learning model, called skip-connected covariance (SCCov) network, for remote sensing scene classification (RSSC). The innovative contribution of this paper is to embed two novel modules into the traditional convolutional neural network (CNN) model, i.e., skip connections and covariance pooling. The advantages of newly developed SCCov are twofold. First, by means of the skip connections, the multi-resolution feature maps produced by the CNN are combined together, which provides important benefits to address the presence of large-scale variance in RSSC data sets. Second, by using covariance pooling, we can fully exploit the second-order information contained in such multi-resolution feature maps. This allows the CNN to achieve more representative feature learning when dealing with RSSC problems. Experimental results, conducted using three large-scale benchmark data sets, demonstrate that our newly proposed SCCov network exhibits very competitive or superior classification performance when compared with the current state-of-the-art RSSC techniques, using a much lower amount of parameters. Specifically, our SCCov only needs 10% of the parameters used by its counterparts.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31295122</pmid><doi>10.1109/TNNLS.2019.2920374</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0585-9848</orcidid><orcidid>https://orcid.org/0000-0003-3105-6499</orcidid><orcidid>https://orcid.org/0000-0002-9613-1659</orcidid><orcidid>https://orcid.org/0000-0003-2351-4461</orcidid><orcidid>https://orcid.org/0000-0002-2384-9141</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2020-05, Vol.31 (5), p.1461-1474
issn 2162-237X
2162-2388
language eng
recordid cdi_crossref_primary_10_1109_TNNLS_2019_2920374
source IEEE/IET Electronic Library (IEL)
subjects Aggregates
Artificial neural networks
Classification
Computational modeling
Covariance
Covariance pooling
Datasets
deep neural network
Feature extraction
Feature maps
Learning
Learning systems
Mathematical models
multi-layer feature
Neural networks
Parameters
Remote sensing
scene recognition
Training
title Skip-Connected Covariance Network for Remote Sensing Scene Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A17%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Skip-Connected%20Covariance%20Network%20for%20Remote%20Sensing%20Scene%20Classification&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=He,%20Nanjun&rft.date=2020-05-01&rft.volume=31&rft.issue=5&rft.spage=1461&rft.epage=1474&rft.pages=1461-1474&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2019.2920374&rft_dat=%3Cproquest_RIE%3E2257708701%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2397908420&rft_id=info:pmid/31295122&rft_ieee_id=8759970&rfr_iscdi=true