Adaptive Neural Output-Feedback Control for a Class of Nonlower Triangular Nonlinear Systems With Unmodeled Dynamics

This paper presents the development of an adaptive neural controller for a class of nonlinear systems with unmodeled dynamics and immeasurable states. An observer is designed to estimate system states. The structure consistency of virtual control signals and the variable partition technique are comb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2018-08, Vol.29 (8), p.3658-3668
Hauptverfasser: Wang, Huanqing, Liu, Peter Xiaoping, Li, Shuai, Wang, Ding
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3668
container_issue 8
container_start_page 3658
container_title IEEE transaction on neural networks and learning systems
container_volume 29
creator Wang, Huanqing
Liu, Peter Xiaoping
Li, Shuai
Wang, Ding
description This paper presents the development of an adaptive neural controller for a class of nonlinear systems with unmodeled dynamics and immeasurable states. An observer is designed to estimate system states. The structure consistency of virtual control signals and the variable partition technique are combined to overcome the difficulties appearing in a nonlower triangular form. An adaptive neural output-feedback controller is developed based on the backstepping technique and the universal approximation property of the radial basis function (RBF) neural networks. By using the Lyapunov stability analysis, the semiglobally and uniformly ultimate boundedness of all signals within the closed-loop system is guaranteed. The simulation results show that the controlled system converges quickly, and all the signals are bounded. This paper is novel at least in the two aspects: 1) an output-feedback control strategy is developed for a class of nonlower triangular nonlinear systems with unmodeled dynamics and 2) the nonlinear disturbances and their bounds are the functions of all states, which is in a more general form than existing results.
doi_str_mv 10.1109/TNNLS.2017.2716947
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNNLS_2017_2716947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8019887</ieee_id><sourcerecordid>2074851852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-c3d01ef9a6e7a8aeb4cfba44ee3d5c6dd6370131c73d3be4f98091067d229b463</originalsourceid><addsrcrecordid>eNpdkU1PGzEQhq2qVUGUP9BKyFIvvST11_rjiEKhlaJwIKi9Wd71bFnwroPtbZV_z0JCDszBM7Kfd2TpQegzJXNKifm-Xq2WN3NGqJozRaUR6h06ZlSyGeNavz_M6s8ROs35nkwlSSWF-YiOmNZSSkKPUTn3blO6f4BXMCYX8PVYNmOZXQL42jUPeBGHkmLAbUzY4UVwOePY4lUcQvwPCa9T54a_Y3Dp5a4bYJputrlAn_Hvrtzh26GPHgJ4fLEdXN81-RP60LqQ4XTfT9Dt5Y_14udseX31a3G-nDW8omU6PaHQGidBOe2gFk1bOyEAuK8a6b3kilBOG8U9r0G0RhNDiVSeMVMLyU_Qt93eTYqPI-Ri-y43EIIbII7ZUsMrQYSWakK_vkHv45iG6XeWESV0RXXFJortqCbFnBO0dpO63qWtpcQ-a7EvWuyzFrvXMoXO9qvHugd_iLxKmIAvO6ADgMOzJtRorfgTfGySBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2074851852</pqid></control><display><type>article</type><title>Adaptive Neural Output-Feedback Control for a Class of Nonlower Triangular Nonlinear Systems With Unmodeled Dynamics</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Huanqing ; Liu, Peter Xiaoping ; Li, Shuai ; Wang, Ding</creator><creatorcontrib>Wang, Huanqing ; Liu, Peter Xiaoping ; Li, Shuai ; Wang, Ding</creatorcontrib><description>This paper presents the development of an adaptive neural controller for a class of nonlinear systems with unmodeled dynamics and immeasurable states. An observer is designed to estimate system states. The structure consistency of virtual control signals and the variable partition technique are combined to overcome the difficulties appearing in a nonlower triangular form. An adaptive neural output-feedback controller is developed based on the backstepping technique and the universal approximation property of the radial basis function (RBF) neural networks. By using the Lyapunov stability analysis, the semiglobally and uniformly ultimate boundedness of all signals within the closed-loop system is guaranteed. The simulation results show that the controlled system converges quickly, and all the signals are bounded. This paper is novel at least in the two aspects: 1) an output-feedback control strategy is developed for a class of nonlower triangular nonlinear systems with unmodeled dynamics and 2) the nonlinear disturbances and their bounds are the functions of all states, which is in a more general form than existing results.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2017.2716947</identifier><identifier>PMID: 28866601</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptive control ; Adaptive neural control ; Adaptive systems ; Backstepping ; Basis functions ; Computer simulation ; Control systems ; Controllers ; Dynamical systems ; Feedback ; Feedback control ; Neural networks ; Nonlinear dynamical systems ; Nonlinear dynamics ; Nonlinear systems ; nonlower triangular nonlinear systems ; Observers ; Output feedback ; output-feedback control ; Radial basis function ; Stability analysis</subject><ispartof>IEEE transaction on neural networks and learning systems, 2018-08, Vol.29 (8), p.3658-3668</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-c3d01ef9a6e7a8aeb4cfba44ee3d5c6dd6370131c73d3be4f98091067d229b463</citedby><cites>FETCH-LOGICAL-c351t-c3d01ef9a6e7a8aeb4cfba44ee3d5c6dd6370131c73d3be4f98091067d229b463</cites><orcidid>0000-0001-5712-9356 ; 0000-0002-7149-5712 ; 0000-0002-8703-6967 ; 0000-0001-8316-5289</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8019887$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8019887$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28866601$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Huanqing</creatorcontrib><creatorcontrib>Liu, Peter Xiaoping</creatorcontrib><creatorcontrib>Li, Shuai</creatorcontrib><creatorcontrib>Wang, Ding</creatorcontrib><title>Adaptive Neural Output-Feedback Control for a Class of Nonlower Triangular Nonlinear Systems With Unmodeled Dynamics</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>This paper presents the development of an adaptive neural controller for a class of nonlinear systems with unmodeled dynamics and immeasurable states. An observer is designed to estimate system states. The structure consistency of virtual control signals and the variable partition technique are combined to overcome the difficulties appearing in a nonlower triangular form. An adaptive neural output-feedback controller is developed based on the backstepping technique and the universal approximation property of the radial basis function (RBF) neural networks. By using the Lyapunov stability analysis, the semiglobally and uniformly ultimate boundedness of all signals within the closed-loop system is guaranteed. The simulation results show that the controlled system converges quickly, and all the signals are bounded. This paper is novel at least in the two aspects: 1) an output-feedback control strategy is developed for a class of nonlower triangular nonlinear systems with unmodeled dynamics and 2) the nonlinear disturbances and their bounds are the functions of all states, which is in a more general form than existing results.</description><subject>Adaptive control</subject><subject>Adaptive neural control</subject><subject>Adaptive systems</subject><subject>Backstepping</subject><subject>Basis functions</subject><subject>Computer simulation</subject><subject>Control systems</subject><subject>Controllers</subject><subject>Dynamical systems</subject><subject>Feedback</subject><subject>Feedback control</subject><subject>Neural networks</subject><subject>Nonlinear dynamical systems</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>nonlower triangular nonlinear systems</subject><subject>Observers</subject><subject>Output feedback</subject><subject>output-feedback control</subject><subject>Radial basis function</subject><subject>Stability analysis</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1PGzEQhq2qVUGUP9BKyFIvvST11_rjiEKhlaJwIKi9Wd71bFnwroPtbZV_z0JCDszBM7Kfd2TpQegzJXNKifm-Xq2WN3NGqJozRaUR6h06ZlSyGeNavz_M6s8ROs35nkwlSSWF-YiOmNZSSkKPUTn3blO6f4BXMCYX8PVYNmOZXQL42jUPeBGHkmLAbUzY4UVwOePY4lUcQvwPCa9T54a_Y3Dp5a4bYJputrlAn_Hvrtzh26GPHgJ4fLEdXN81-RP60LqQ4XTfT9Dt5Y_14udseX31a3G-nDW8omU6PaHQGidBOe2gFk1bOyEAuK8a6b3kilBOG8U9r0G0RhNDiVSeMVMLyU_Qt93eTYqPI-Ri-y43EIIbII7ZUsMrQYSWakK_vkHv45iG6XeWESV0RXXFJortqCbFnBO0dpO63qWtpcQ-a7EvWuyzFrvXMoXO9qvHugd_iLxKmIAvO6ADgMOzJtRorfgTfGySBA</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Wang, Huanqing</creator><creator>Liu, Peter Xiaoping</creator><creator>Li, Shuai</creator><creator>Wang, Ding</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5712-9356</orcidid><orcidid>https://orcid.org/0000-0002-7149-5712</orcidid><orcidid>https://orcid.org/0000-0002-8703-6967</orcidid><orcidid>https://orcid.org/0000-0001-8316-5289</orcidid></search><sort><creationdate>20180801</creationdate><title>Adaptive Neural Output-Feedback Control for a Class of Nonlower Triangular Nonlinear Systems With Unmodeled Dynamics</title><author>Wang, Huanqing ; Liu, Peter Xiaoping ; Li, Shuai ; Wang, Ding</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-c3d01ef9a6e7a8aeb4cfba44ee3d5c6dd6370131c73d3be4f98091067d229b463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive control</topic><topic>Adaptive neural control</topic><topic>Adaptive systems</topic><topic>Backstepping</topic><topic>Basis functions</topic><topic>Computer simulation</topic><topic>Control systems</topic><topic>Controllers</topic><topic>Dynamical systems</topic><topic>Feedback</topic><topic>Feedback control</topic><topic>Neural networks</topic><topic>Nonlinear dynamical systems</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>nonlower triangular nonlinear systems</topic><topic>Observers</topic><topic>Output feedback</topic><topic>output-feedback control</topic><topic>Radial basis function</topic><topic>Stability analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Huanqing</creatorcontrib><creatorcontrib>Liu, Peter Xiaoping</creatorcontrib><creatorcontrib>Li, Shuai</creatorcontrib><creatorcontrib>Wang, Ding</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Huanqing</au><au>Liu, Peter Xiaoping</au><au>Li, Shuai</au><au>Wang, Ding</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Neural Output-Feedback Control for a Class of Nonlower Triangular Nonlinear Systems With Unmodeled Dynamics</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>29</volume><issue>8</issue><spage>3658</spage><epage>3668</epage><pages>3658-3668</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>This paper presents the development of an adaptive neural controller for a class of nonlinear systems with unmodeled dynamics and immeasurable states. An observer is designed to estimate system states. The structure consistency of virtual control signals and the variable partition technique are combined to overcome the difficulties appearing in a nonlower triangular form. An adaptive neural output-feedback controller is developed based on the backstepping technique and the universal approximation property of the radial basis function (RBF) neural networks. By using the Lyapunov stability analysis, the semiglobally and uniformly ultimate boundedness of all signals within the closed-loop system is guaranteed. The simulation results show that the controlled system converges quickly, and all the signals are bounded. This paper is novel at least in the two aspects: 1) an output-feedback control strategy is developed for a class of nonlower triangular nonlinear systems with unmodeled dynamics and 2) the nonlinear disturbances and their bounds are the functions of all states, which is in a more general form than existing results.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28866601</pmid><doi>10.1109/TNNLS.2017.2716947</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5712-9356</orcidid><orcidid>https://orcid.org/0000-0002-7149-5712</orcidid><orcidid>https://orcid.org/0000-0002-8703-6967</orcidid><orcidid>https://orcid.org/0000-0001-8316-5289</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2018-08, Vol.29 (8), p.3658-3668
issn 2162-237X
2162-2388
language eng
recordid cdi_crossref_primary_10_1109_TNNLS_2017_2716947
source IEEE Electronic Library (IEL)
subjects Adaptive control
Adaptive neural control
Adaptive systems
Backstepping
Basis functions
Computer simulation
Control systems
Controllers
Dynamical systems
Feedback
Feedback control
Neural networks
Nonlinear dynamical systems
Nonlinear dynamics
Nonlinear systems
nonlower triangular nonlinear systems
Observers
Output feedback
output-feedback control
Radial basis function
Stability analysis
title Adaptive Neural Output-Feedback Control for a Class of Nonlower Triangular Nonlinear Systems With Unmodeled Dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A53%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Neural%20Output-Feedback%20Control%20for%20a%20Class%20of%20Nonlower%20Triangular%20Nonlinear%20Systems%20With%20Unmodeled%20Dynamics&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Wang,%20Huanqing&rft.date=2018-08-01&rft.volume=29&rft.issue=8&rft.spage=3658&rft.epage=3668&rft.pages=3658-3668&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2017.2716947&rft_dat=%3Cproquest_RIE%3E2074851852%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2074851852&rft_id=info:pmid/28866601&rft_ieee_id=8019887&rfr_iscdi=true