A Bi-Criteria Active Learning Algorithm for Dynamic Data Streams
Active learning (AL) is a promising way to efficiently build up training sets with minimal supervision. A learner deliberately queries specific instances to tune the classifier's model using as few labels as possible. The challenge for streaming is that the data distribution may evolve over tim...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2018-01, Vol.29 (1), p.74-86 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 86 |
---|---|
container_issue | 1 |
container_start_page | 74 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 29 |
creator | Mohamad, Saad Bouchachia, Abdelhamid Sayed-Mouchaweh, Moamar |
description | Active learning (AL) is a promising way to efficiently build up training sets with minimal supervision. A learner deliberately queries specific instances to tune the classifier's model using as few labels as possible. The challenge for streaming is that the data distribution may evolve over time, and therefore the model must adapt. Another challenge is the sampling bias where the sampled training set does not reflect the underlying data distribution. In the presence of concept drift, sampling bias is more likely to occur as the training set needs to represent the whole evolving data. To tackle these challenges, we propose a novel bi-criteria AL (BAL) approach that relies on two selection criteria, namely, label uncertainty criterion and density-based criterion. While the first criterion selects instances that are the most uncertain in terms of class membership, the latter dynamically curbs the sampling bias by weighting the samples to reflect on the true underlying distribution. To design and implement these two criteria for learning from streams, BAL adopts a Bayesian online learning approach and combines online classification and online clustering through the use of online logistic regression and online growing Gaussian mixture models, respectively. Empirical results obtained on standard synthetic and real-world benchmarks show the high performance of the proposed BAL method compared with the state-of-the-art AL methods. |
doi_str_mv | 10.1109/TNNLS.2016.2614393 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNNLS_2016_2614393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7605500</ieee_id><sourcerecordid>1984556432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-589d68fb6e5872bd1714621f03e668e7bd26ad6d993fe2ee6a2db668e6040db23</originalsourceid><addsrcrecordid>eNpdkctOwzAQRS0EAlT4AZBQJDawSPEjduIdoQWKFMGiRWJnOckEjPIAO63Uv8ehpQu8sTX3zMNzETojeEwIljeL5-dsPqaYiDEVJGKS7aFjSgQNKUuS_d07fjtCp859Yn8E5iKSh-iIxnHMJcHH6DYN7kw4saYHa3SQFr1ZQZCBtq1p34O0fu-89tEEVWeD6brVjSmCqe51MO8t6MadoINK1w5Ot_cIvT7cLyazMHt5fJqkWVhEVPYhT2QpkioXwJOY5iWJSSQoqTADIRKI85IKXYpSSlYBBRCalvmgCBzhMqdshK43dT90rb6sabRdq04bNUszNcQwY0RyxlbEs1cb9st230twvWqMK6CudQvd0imSMM5JJHnk0ct_6Ge3tK3_iSIyibhfGBua0w1V2M45C9VuAoLVYIf6tUMNdqitHT7pYlt6mTdQ7lL-lu-B8w1gAGAnx94ljjH7AQWYitc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1984556432</pqid></control><display><type>article</type><title>A Bi-Criteria Active Learning Algorithm for Dynamic Data Streams</title><source>IEEE Electronic Library (IEL)</source><creator>Mohamad, Saad ; Bouchachia, Abdelhamid ; Sayed-Mouchaweh, Moamar</creator><creatorcontrib>Mohamad, Saad ; Bouchachia, Abdelhamid ; Sayed-Mouchaweh, Moamar</creatorcontrib><description>Active learning (AL) is a promising way to efficiently build up training sets with minimal supervision. A learner deliberately queries specific instances to tune the classifier's model using as few labels as possible. The challenge for streaming is that the data distribution may evolve over time, and therefore the model must adapt. Another challenge is the sampling bias where the sampled training set does not reflect the underlying data distribution. In the presence of concept drift, sampling bias is more likely to occur as the training set needs to represent the whole evolving data. To tackle these challenges, we propose a novel bi-criteria AL (BAL) approach that relies on two selection criteria, namely, label uncertainty criterion and density-based criterion. While the first criterion selects instances that are the most uncertain in terms of class membership, the latter dynamically curbs the sampling bias by weighting the samples to reflect on the true underlying distribution. To design and implement these two criteria for learning from streams, BAL adopts a Bayesian online learning approach and combines online classification and online clustering through the use of online logistic regression and online growing Gaussian mixture models, respectively. Empirical results obtained on standard synthetic and real-world benchmarks show the high performance of the proposed BAL method compared with the state-of-the-art AL methods.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2016.2614393</identifier><identifier>PMID: 27775910</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Active learning ; Active learning (AL) ; Adaptation models ; Bayesian analysis ; Bayesian online learning ; Benchmarks ; Bias ; Biological evolution ; Clustering ; Clustering algorithms ; concept drift ; Criteria ; data streams ; Data transmission ; Distance learning ; Engineering Sciences ; Engines ; Heuristic algorithms ; Internet ; Labeling ; Learning ; Machine learning ; Mathematical models ; Regression analysis ; Sampling ; Training ; Uncertainty</subject><ispartof>IEEE transaction on neural networks and learning systems, 2018-01, Vol.29 (1), p.74-86</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-589d68fb6e5872bd1714621f03e668e7bd26ad6d993fe2ee6a2db668e6040db23</citedby><cites>FETCH-LOGICAL-c429t-589d68fb6e5872bd1714621f03e668e7bd26ad6d993fe2ee6a2db668e6040db23</cites><orcidid>0000-0002-6929-986X ; 0000-0002-1980-5517</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7605500$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7605500$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27775910$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03319533$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mohamad, Saad</creatorcontrib><creatorcontrib>Bouchachia, Abdelhamid</creatorcontrib><creatorcontrib>Sayed-Mouchaweh, Moamar</creatorcontrib><title>A Bi-Criteria Active Learning Algorithm for Dynamic Data Streams</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Active learning (AL) is a promising way to efficiently build up training sets with minimal supervision. A learner deliberately queries specific instances to tune the classifier's model using as few labels as possible. The challenge for streaming is that the data distribution may evolve over time, and therefore the model must adapt. Another challenge is the sampling bias where the sampled training set does not reflect the underlying data distribution. In the presence of concept drift, sampling bias is more likely to occur as the training set needs to represent the whole evolving data. To tackle these challenges, we propose a novel bi-criteria AL (BAL) approach that relies on two selection criteria, namely, label uncertainty criterion and density-based criterion. While the first criterion selects instances that are the most uncertain in terms of class membership, the latter dynamically curbs the sampling bias by weighting the samples to reflect on the true underlying distribution. To design and implement these two criteria for learning from streams, BAL adopts a Bayesian online learning approach and combines online classification and online clustering through the use of online logistic regression and online growing Gaussian mixture models, respectively. Empirical results obtained on standard synthetic and real-world benchmarks show the high performance of the proposed BAL method compared with the state-of-the-art AL methods.</description><subject>Active learning</subject><subject>Active learning (AL)</subject><subject>Adaptation models</subject><subject>Bayesian analysis</subject><subject>Bayesian online learning</subject><subject>Benchmarks</subject><subject>Bias</subject><subject>Biological evolution</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>concept drift</subject><subject>Criteria</subject><subject>data streams</subject><subject>Data transmission</subject><subject>Distance learning</subject><subject>Engineering Sciences</subject><subject>Engines</subject><subject>Heuristic algorithms</subject><subject>Internet</subject><subject>Labeling</subject><subject>Learning</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Regression analysis</subject><subject>Sampling</subject><subject>Training</subject><subject>Uncertainty</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkctOwzAQRS0EAlT4AZBQJDawSPEjduIdoQWKFMGiRWJnOckEjPIAO63Uv8ehpQu8sTX3zMNzETojeEwIljeL5-dsPqaYiDEVJGKS7aFjSgQNKUuS_d07fjtCp859Yn8E5iKSh-iIxnHMJcHH6DYN7kw4saYHa3SQFr1ZQZCBtq1p34O0fu-89tEEVWeD6brVjSmCqe51MO8t6MadoINK1w5Ot_cIvT7cLyazMHt5fJqkWVhEVPYhT2QpkioXwJOY5iWJSSQoqTADIRKI85IKXYpSSlYBBRCalvmgCBzhMqdshK43dT90rb6sabRdq04bNUszNcQwY0RyxlbEs1cb9st230twvWqMK6CudQvd0imSMM5JJHnk0ct_6Ge3tK3_iSIyibhfGBua0w1V2M45C9VuAoLVYIf6tUMNdqitHT7pYlt6mTdQ7lL-lu-B8w1gAGAnx94ljjH7AQWYitc</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Mohamad, Saad</creator><creator>Bouchachia, Abdelhamid</creator><creator>Sayed-Mouchaweh, Moamar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6929-986X</orcidid><orcidid>https://orcid.org/0000-0002-1980-5517</orcidid></search><sort><creationdate>201801</creationdate><title>A Bi-Criteria Active Learning Algorithm for Dynamic Data Streams</title><author>Mohamad, Saad ; Bouchachia, Abdelhamid ; Sayed-Mouchaweh, Moamar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-589d68fb6e5872bd1714621f03e668e7bd26ad6d993fe2ee6a2db668e6040db23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Active learning</topic><topic>Active learning (AL)</topic><topic>Adaptation models</topic><topic>Bayesian analysis</topic><topic>Bayesian online learning</topic><topic>Benchmarks</topic><topic>Bias</topic><topic>Biological evolution</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>concept drift</topic><topic>Criteria</topic><topic>data streams</topic><topic>Data transmission</topic><topic>Distance learning</topic><topic>Engineering Sciences</topic><topic>Engines</topic><topic>Heuristic algorithms</topic><topic>Internet</topic><topic>Labeling</topic><topic>Learning</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Regression analysis</topic><topic>Sampling</topic><topic>Training</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Mohamad, Saad</creatorcontrib><creatorcontrib>Bouchachia, Abdelhamid</creatorcontrib><creatorcontrib>Sayed-Mouchaweh, Moamar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mohamad, Saad</au><au>Bouchachia, Abdelhamid</au><au>Sayed-Mouchaweh, Moamar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bi-Criteria Active Learning Algorithm for Dynamic Data Streams</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2018-01</date><risdate>2018</risdate><volume>29</volume><issue>1</issue><spage>74</spage><epage>86</epage><pages>74-86</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Active learning (AL) is a promising way to efficiently build up training sets with minimal supervision. A learner deliberately queries specific instances to tune the classifier's model using as few labels as possible. The challenge for streaming is that the data distribution may evolve over time, and therefore the model must adapt. Another challenge is the sampling bias where the sampled training set does not reflect the underlying data distribution. In the presence of concept drift, sampling bias is more likely to occur as the training set needs to represent the whole evolving data. To tackle these challenges, we propose a novel bi-criteria AL (BAL) approach that relies on two selection criteria, namely, label uncertainty criterion and density-based criterion. While the first criterion selects instances that are the most uncertain in terms of class membership, the latter dynamically curbs the sampling bias by weighting the samples to reflect on the true underlying distribution. To design and implement these two criteria for learning from streams, BAL adopts a Bayesian online learning approach and combines online classification and online clustering through the use of online logistic regression and online growing Gaussian mixture models, respectively. Empirical results obtained on standard synthetic and real-world benchmarks show the high performance of the proposed BAL method compared with the state-of-the-art AL methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>27775910</pmid><doi>10.1109/TNNLS.2016.2614393</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6929-986X</orcidid><orcidid>https://orcid.org/0000-0002-1980-5517</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2018-01, Vol.29 (1), p.74-86 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TNNLS_2016_2614393 |
source | IEEE Electronic Library (IEL) |
subjects | Active learning Active learning (AL) Adaptation models Bayesian analysis Bayesian online learning Benchmarks Bias Biological evolution Clustering Clustering algorithms concept drift Criteria data streams Data transmission Distance learning Engineering Sciences Engines Heuristic algorithms Internet Labeling Learning Machine learning Mathematical models Regression analysis Sampling Training Uncertainty |
title | A Bi-Criteria Active Learning Algorithm for Dynamic Data Streams |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A36%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bi-Criteria%20Active%20Learning%20Algorithm%20for%20Dynamic%20Data%20Streams&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Mohamad,%20Saad&rft.date=2018-01&rft.volume=29&rft.issue=1&rft.spage=74&rft.epage=86&rft.pages=74-86&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2016.2614393&rft_dat=%3Cproquest_RIE%3E1984556432%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1984556432&rft_id=info:pmid/27775910&rft_ieee_id=7605500&rfr_iscdi=true |