A Novel Unified and Self-Stabilizing Algorithm for Generalized Eigenpairs Extraction
Generalized eigendecomposition problem has been widely employed in many signal processing applications. In this paper, we propose a unified and self-stabilizing algorithm, which is able to extract the first principal and minor generalized eigenvectors of a matrix pencil of two vector sequences adapt...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2017-12, Vol.28 (12), p.3032-3044 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3044 |
---|---|
container_issue | 12 |
container_start_page | 3032 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 28 |
creator | Feng, Xiaowei Kong, Xiangyu Ma, Hongguang Si, Xiaosheng |
description | Generalized eigendecomposition problem has been widely employed in many signal processing applications. In this paper, we propose a unified and self-stabilizing algorithm, which is able to extract the first principal and minor generalized eigenvectors of a matrix pencil of two vector sequences adaptively. Furthermore, we extend the proposed algorithm to extract multiple generalized eigenvectors. The performance analysis shows that only the desired equilibrium point of the proposed algorithm is stable and all others are (unstable) repellers or saddle points. Convergence analysis based on the deterministic discrete-time approach shows that, for a step size within a certain range, the norm of the principal/minor state vector converges to a fixed value that relates to the corresponding principal/minor generalized eigenvalue. Thus, the proposed algorithm is a generalized eigenpairs (eigenvectors and eigenvalues) extraction algorithm. Finally, the simulation experiments are carried to further demonstrate the efficiency of the proposed algorithm. |
doi_str_mv | 10.1109/TNNLS.2016.2614130 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNNLS_2016_2614130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7587340</ieee_id><sourcerecordid>1835410372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-b6fa4721eee4d99fff2eda31514953bf5ca5004a4f1b641a1ed7ecff9625432a3</originalsourceid><addsrcrecordid>eNpdkEtLw0AQgBdRVKp_QEECXryk7uwrybFIfUCph1bwtmyS2bqSJnU3FfXXu9rag3OZgflmmPkIOQM6BKDF9Xw6ncyGjIIaMgUCON0jxwwUSxnP8_1dnT0fkdMQXmkMRaUSxSE5YlkmqKRwTOajZNq9Y5M8tc46rBPT1skMG5vOelO6xn25dpGMmkXnXf-yTGznkzts0ZvYivjYLbBdGedDMv7oval617Un5MCaJuDpNg_I0-14fnOfTh7vHm5Gk7TiEvq0VNaIjAEiiroorLUMa8NBgigkL62sjKRUGGGhVAIMYJ1hZW2hmBScGT4gV5u9K9-9rTH0eulChU1jWuzWQUPOpQDKMxbRy3_oa7f2bbxOQ6EU40zmMlJsQ1W-C8Gj1SvvlsZ_aqD6R7v-1a5_tOut9jh0sV29LpdY70b-JEfgfAO4-Omunck844Lyb5Ywhe0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1966232585</pqid></control><display><type>article</type><title>A Novel Unified and Self-Stabilizing Algorithm for Generalized Eigenpairs Extraction</title><source>IEEE Electronic Library (IEL)</source><creator>Feng, Xiaowei ; Kong, Xiangyu ; Ma, Hongguang ; Si, Xiaosheng</creator><creatorcontrib>Feng, Xiaowei ; Kong, Xiangyu ; Ma, Hongguang ; Si, Xiaosheng</creatorcontrib><description>Generalized eigendecomposition problem has been widely employed in many signal processing applications. In this paper, we propose a unified and self-stabilizing algorithm, which is able to extract the first principal and minor generalized eigenvectors of a matrix pencil of two vector sequences adaptively. Furthermore, we extend the proposed algorithm to extract multiple generalized eigenvectors. The performance analysis shows that only the desired equilibrium point of the proposed algorithm is stable and all others are (unstable) repellers or saddle points. Convergence analysis based on the deterministic discrete-time approach shows that, for a step size within a certain range, the norm of the principal/minor state vector converges to a fixed value that relates to the corresponding principal/minor generalized eigenvalue. Thus, the proposed algorithm is a generalized eigenpairs (eigenvectors and eigenvalues) extraction algorithm. Finally, the simulation experiments are carried to further demonstrate the efficiency of the proposed algorithm.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2016.2614130</identifier><identifier>PMID: 27740501</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Computer simulation ; Convergence ; Covariance matrices ; Data processing ; Deterministic discrete-time (DDT) approach ; Eigenvalues ; Eigenvalues and eigenfunctions ; Eigenvectors ; Estimation ; generalized eigendecomposition (GED) ; generalized eigenpair ; Mathematical analysis ; Matrix algebra ; Matrix methods ; Neural networks ; Saddle points ; Signal processing ; Signal processing algorithms ; unified algorithm</subject><ispartof>IEEE transaction on neural networks and learning systems, 2017-12, Vol.28 (12), p.3032-3044</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-b6fa4721eee4d99fff2eda31514953bf5ca5004a4f1b641a1ed7ecff9625432a3</citedby><cites>FETCH-LOGICAL-c351t-b6fa4721eee4d99fff2eda31514953bf5ca5004a4f1b641a1ed7ecff9625432a3</cites><orcidid>0000-0003-2084-7826</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7587340$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7587340$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27740501$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feng, Xiaowei</creatorcontrib><creatorcontrib>Kong, Xiangyu</creatorcontrib><creatorcontrib>Ma, Hongguang</creatorcontrib><creatorcontrib>Si, Xiaosheng</creatorcontrib><title>A Novel Unified and Self-Stabilizing Algorithm for Generalized Eigenpairs Extraction</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Generalized eigendecomposition problem has been widely employed in many signal processing applications. In this paper, we propose a unified and self-stabilizing algorithm, which is able to extract the first principal and minor generalized eigenvectors of a matrix pencil of two vector sequences adaptively. Furthermore, we extend the proposed algorithm to extract multiple generalized eigenvectors. The performance analysis shows that only the desired equilibrium point of the proposed algorithm is stable and all others are (unstable) repellers or saddle points. Convergence analysis based on the deterministic discrete-time approach shows that, for a step size within a certain range, the norm of the principal/minor state vector converges to a fixed value that relates to the corresponding principal/minor generalized eigenvalue. Thus, the proposed algorithm is a generalized eigenpairs (eigenvectors and eigenvalues) extraction algorithm. Finally, the simulation experiments are carried to further demonstrate the efficiency of the proposed algorithm.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Convergence</subject><subject>Covariance matrices</subject><subject>Data processing</subject><subject>Deterministic discrete-time (DDT) approach</subject><subject>Eigenvalues</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Eigenvectors</subject><subject>Estimation</subject><subject>generalized eigendecomposition (GED)</subject><subject>generalized eigenpair</subject><subject>Mathematical analysis</subject><subject>Matrix algebra</subject><subject>Matrix methods</subject><subject>Neural networks</subject><subject>Saddle points</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>unified algorithm</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLw0AQgBdRVKp_QEECXryk7uwrybFIfUCph1bwtmyS2bqSJnU3FfXXu9rag3OZgflmmPkIOQM6BKDF9Xw6ncyGjIIaMgUCON0jxwwUSxnP8_1dnT0fkdMQXmkMRaUSxSE5YlkmqKRwTOajZNq9Y5M8tc46rBPT1skMG5vOelO6xn25dpGMmkXnXf-yTGznkzts0ZvYivjYLbBdGedDMv7oval617Un5MCaJuDpNg_I0-14fnOfTh7vHm5Gk7TiEvq0VNaIjAEiiroorLUMa8NBgigkL62sjKRUGGGhVAIMYJ1hZW2hmBScGT4gV5u9K9-9rTH0eulChU1jWuzWQUPOpQDKMxbRy3_oa7f2bbxOQ6EU40zmMlJsQ1W-C8Gj1SvvlsZ_aqD6R7v-1a5_tOut9jh0sV29LpdY70b-JEfgfAO4-Omunck844Lyb5Ywhe0</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Feng, Xiaowei</creator><creator>Kong, Xiangyu</creator><creator>Ma, Hongguang</creator><creator>Si, Xiaosheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2084-7826</orcidid></search><sort><creationdate>20171201</creationdate><title>A Novel Unified and Self-Stabilizing Algorithm for Generalized Eigenpairs Extraction</title><author>Feng, Xiaowei ; Kong, Xiangyu ; Ma, Hongguang ; Si, Xiaosheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-b6fa4721eee4d99fff2eda31514953bf5ca5004a4f1b641a1ed7ecff9625432a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Convergence</topic><topic>Covariance matrices</topic><topic>Data processing</topic><topic>Deterministic discrete-time (DDT) approach</topic><topic>Eigenvalues</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Eigenvectors</topic><topic>Estimation</topic><topic>generalized eigendecomposition (GED)</topic><topic>generalized eigenpair</topic><topic>Mathematical analysis</topic><topic>Matrix algebra</topic><topic>Matrix methods</topic><topic>Neural networks</topic><topic>Saddle points</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>unified algorithm</topic><toplevel>online_resources</toplevel><creatorcontrib>Feng, Xiaowei</creatorcontrib><creatorcontrib>Kong, Xiangyu</creatorcontrib><creatorcontrib>Ma, Hongguang</creatorcontrib><creatorcontrib>Si, Xiaosheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Feng, Xiaowei</au><au>Kong, Xiangyu</au><au>Ma, Hongguang</au><au>Si, Xiaosheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Unified and Self-Stabilizing Algorithm for Generalized Eigenpairs Extraction</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>28</volume><issue>12</issue><spage>3032</spage><epage>3044</epage><pages>3032-3044</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Generalized eigendecomposition problem has been widely employed in many signal processing applications. In this paper, we propose a unified and self-stabilizing algorithm, which is able to extract the first principal and minor generalized eigenvectors of a matrix pencil of two vector sequences adaptively. Furthermore, we extend the proposed algorithm to extract multiple generalized eigenvectors. The performance analysis shows that only the desired equilibrium point of the proposed algorithm is stable and all others are (unstable) repellers or saddle points. Convergence analysis based on the deterministic discrete-time approach shows that, for a step size within a certain range, the norm of the principal/minor state vector converges to a fixed value that relates to the corresponding principal/minor generalized eigenvalue. Thus, the proposed algorithm is a generalized eigenpairs (eigenvectors and eigenvalues) extraction algorithm. Finally, the simulation experiments are carried to further demonstrate the efficiency of the proposed algorithm.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>27740501</pmid><doi>10.1109/TNNLS.2016.2614130</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2084-7826</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2017-12, Vol.28 (12), p.3032-3044 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TNNLS_2016_2614130 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithm design and analysis Algorithms Computer simulation Convergence Covariance matrices Data processing Deterministic discrete-time (DDT) approach Eigenvalues Eigenvalues and eigenfunctions Eigenvectors Estimation generalized eigendecomposition (GED) generalized eigenpair Mathematical analysis Matrix algebra Matrix methods Neural networks Saddle points Signal processing Signal processing algorithms unified algorithm |
title | A Novel Unified and Self-Stabilizing Algorithm for Generalized Eigenpairs Extraction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A08%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Unified%20and%20Self-Stabilizing%20Algorithm%20for%20Generalized%20Eigenpairs%20Extraction&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Feng,%20Xiaowei&rft.date=2017-12-01&rft.volume=28&rft.issue=12&rft.spage=3032&rft.epage=3044&rft.pages=3032-3044&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2016.2614130&rft_dat=%3Cproquest_RIE%3E1835410372%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1966232585&rft_id=info:pmid/27740501&rft_ieee_id=7587340&rfr_iscdi=true |