A Novel Unified and Self-Stabilizing Algorithm for Generalized Eigenpairs Extraction

Generalized eigendecomposition problem has been widely employed in many signal processing applications. In this paper, we propose a unified and self-stabilizing algorithm, which is able to extract the first principal and minor generalized eigenvectors of a matrix pencil of two vector sequences adapt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2017-12, Vol.28 (12), p.3032-3044
Hauptverfasser: Feng, Xiaowei, Kong, Xiangyu, Ma, Hongguang, Si, Xiaosheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3044
container_issue 12
container_start_page 3032
container_title IEEE transaction on neural networks and learning systems
container_volume 28
creator Feng, Xiaowei
Kong, Xiangyu
Ma, Hongguang
Si, Xiaosheng
description Generalized eigendecomposition problem has been widely employed in many signal processing applications. In this paper, we propose a unified and self-stabilizing algorithm, which is able to extract the first principal and minor generalized eigenvectors of a matrix pencil of two vector sequences adaptively. Furthermore, we extend the proposed algorithm to extract multiple generalized eigenvectors. The performance analysis shows that only the desired equilibrium point of the proposed algorithm is stable and all others are (unstable) repellers or saddle points. Convergence analysis based on the deterministic discrete-time approach shows that, for a step size within a certain range, the norm of the principal/minor state vector converges to a fixed value that relates to the corresponding principal/minor generalized eigenvalue. Thus, the proposed algorithm is a generalized eigenpairs (eigenvectors and eigenvalues) extraction algorithm. Finally, the simulation experiments are carried to further demonstrate the efficiency of the proposed algorithm.
doi_str_mv 10.1109/TNNLS.2016.2614130
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNNLS_2016_2614130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7587340</ieee_id><sourcerecordid>1835410372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-b6fa4721eee4d99fff2eda31514953bf5ca5004a4f1b641a1ed7ecff9625432a3</originalsourceid><addsrcrecordid>eNpdkEtLw0AQgBdRVKp_QEECXryk7uwrybFIfUCph1bwtmyS2bqSJnU3FfXXu9rag3OZgflmmPkIOQM6BKDF9Xw6ncyGjIIaMgUCON0jxwwUSxnP8_1dnT0fkdMQXmkMRaUSxSE5YlkmqKRwTOajZNq9Y5M8tc46rBPT1skMG5vOelO6xn25dpGMmkXnXf-yTGznkzts0ZvYivjYLbBdGedDMv7oval617Un5MCaJuDpNg_I0-14fnOfTh7vHm5Gk7TiEvq0VNaIjAEiiroorLUMa8NBgigkL62sjKRUGGGhVAIMYJ1hZW2hmBScGT4gV5u9K9-9rTH0eulChU1jWuzWQUPOpQDKMxbRy3_oa7f2bbxOQ6EU40zmMlJsQ1W-C8Gj1SvvlsZ_aqD6R7v-1a5_tOut9jh0sV29LpdY70b-JEfgfAO4-Omunck844Lyb5Ywhe0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1966232585</pqid></control><display><type>article</type><title>A Novel Unified and Self-Stabilizing Algorithm for Generalized Eigenpairs Extraction</title><source>IEEE Electronic Library (IEL)</source><creator>Feng, Xiaowei ; Kong, Xiangyu ; Ma, Hongguang ; Si, Xiaosheng</creator><creatorcontrib>Feng, Xiaowei ; Kong, Xiangyu ; Ma, Hongguang ; Si, Xiaosheng</creatorcontrib><description>Generalized eigendecomposition problem has been widely employed in many signal processing applications. In this paper, we propose a unified and self-stabilizing algorithm, which is able to extract the first principal and minor generalized eigenvectors of a matrix pencil of two vector sequences adaptively. Furthermore, we extend the proposed algorithm to extract multiple generalized eigenvectors. The performance analysis shows that only the desired equilibrium point of the proposed algorithm is stable and all others are (unstable) repellers or saddle points. Convergence analysis based on the deterministic discrete-time approach shows that, for a step size within a certain range, the norm of the principal/minor state vector converges to a fixed value that relates to the corresponding principal/minor generalized eigenvalue. Thus, the proposed algorithm is a generalized eigenpairs (eigenvectors and eigenvalues) extraction algorithm. Finally, the simulation experiments are carried to further demonstrate the efficiency of the proposed algorithm.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2016.2614130</identifier><identifier>PMID: 27740501</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Computer simulation ; Convergence ; Covariance matrices ; Data processing ; Deterministic discrete-time (DDT) approach ; Eigenvalues ; Eigenvalues and eigenfunctions ; Eigenvectors ; Estimation ; generalized eigendecomposition (GED) ; generalized eigenpair ; Mathematical analysis ; Matrix algebra ; Matrix methods ; Neural networks ; Saddle points ; Signal processing ; Signal processing algorithms ; unified algorithm</subject><ispartof>IEEE transaction on neural networks and learning systems, 2017-12, Vol.28 (12), p.3032-3044</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-b6fa4721eee4d99fff2eda31514953bf5ca5004a4f1b641a1ed7ecff9625432a3</citedby><cites>FETCH-LOGICAL-c351t-b6fa4721eee4d99fff2eda31514953bf5ca5004a4f1b641a1ed7ecff9625432a3</cites><orcidid>0000-0003-2084-7826</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7587340$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7587340$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27740501$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feng, Xiaowei</creatorcontrib><creatorcontrib>Kong, Xiangyu</creatorcontrib><creatorcontrib>Ma, Hongguang</creatorcontrib><creatorcontrib>Si, Xiaosheng</creatorcontrib><title>A Novel Unified and Self-Stabilizing Algorithm for Generalized Eigenpairs Extraction</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Generalized eigendecomposition problem has been widely employed in many signal processing applications. In this paper, we propose a unified and self-stabilizing algorithm, which is able to extract the first principal and minor generalized eigenvectors of a matrix pencil of two vector sequences adaptively. Furthermore, we extend the proposed algorithm to extract multiple generalized eigenvectors. The performance analysis shows that only the desired equilibrium point of the proposed algorithm is stable and all others are (unstable) repellers or saddle points. Convergence analysis based on the deterministic discrete-time approach shows that, for a step size within a certain range, the norm of the principal/minor state vector converges to a fixed value that relates to the corresponding principal/minor generalized eigenvalue. Thus, the proposed algorithm is a generalized eigenpairs (eigenvectors and eigenvalues) extraction algorithm. Finally, the simulation experiments are carried to further demonstrate the efficiency of the proposed algorithm.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Convergence</subject><subject>Covariance matrices</subject><subject>Data processing</subject><subject>Deterministic discrete-time (DDT) approach</subject><subject>Eigenvalues</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Eigenvectors</subject><subject>Estimation</subject><subject>generalized eigendecomposition (GED)</subject><subject>generalized eigenpair</subject><subject>Mathematical analysis</subject><subject>Matrix algebra</subject><subject>Matrix methods</subject><subject>Neural networks</subject><subject>Saddle points</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>unified algorithm</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLw0AQgBdRVKp_QEECXryk7uwrybFIfUCph1bwtmyS2bqSJnU3FfXXu9rag3OZgflmmPkIOQM6BKDF9Xw6ncyGjIIaMgUCON0jxwwUSxnP8_1dnT0fkdMQXmkMRaUSxSE5YlkmqKRwTOajZNq9Y5M8tc46rBPT1skMG5vOelO6xn25dpGMmkXnXf-yTGznkzts0ZvYivjYLbBdGedDMv7oval617Un5MCaJuDpNg_I0-14fnOfTh7vHm5Gk7TiEvq0VNaIjAEiiroorLUMa8NBgigkL62sjKRUGGGhVAIMYJ1hZW2hmBScGT4gV5u9K9-9rTH0eulChU1jWuzWQUPOpQDKMxbRy3_oa7f2bbxOQ6EU40zmMlJsQ1W-C8Gj1SvvlsZ_aqD6R7v-1a5_tOut9jh0sV29LpdY70b-JEfgfAO4-Omunck844Lyb5Ywhe0</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Feng, Xiaowei</creator><creator>Kong, Xiangyu</creator><creator>Ma, Hongguang</creator><creator>Si, Xiaosheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2084-7826</orcidid></search><sort><creationdate>20171201</creationdate><title>A Novel Unified and Self-Stabilizing Algorithm for Generalized Eigenpairs Extraction</title><author>Feng, Xiaowei ; Kong, Xiangyu ; Ma, Hongguang ; Si, Xiaosheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-b6fa4721eee4d99fff2eda31514953bf5ca5004a4f1b641a1ed7ecff9625432a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Convergence</topic><topic>Covariance matrices</topic><topic>Data processing</topic><topic>Deterministic discrete-time (DDT) approach</topic><topic>Eigenvalues</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Eigenvectors</topic><topic>Estimation</topic><topic>generalized eigendecomposition (GED)</topic><topic>generalized eigenpair</topic><topic>Mathematical analysis</topic><topic>Matrix algebra</topic><topic>Matrix methods</topic><topic>Neural networks</topic><topic>Saddle points</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>unified algorithm</topic><toplevel>online_resources</toplevel><creatorcontrib>Feng, Xiaowei</creatorcontrib><creatorcontrib>Kong, Xiangyu</creatorcontrib><creatorcontrib>Ma, Hongguang</creatorcontrib><creatorcontrib>Si, Xiaosheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Feng, Xiaowei</au><au>Kong, Xiangyu</au><au>Ma, Hongguang</au><au>Si, Xiaosheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Unified and Self-Stabilizing Algorithm for Generalized Eigenpairs Extraction</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>28</volume><issue>12</issue><spage>3032</spage><epage>3044</epage><pages>3032-3044</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Generalized eigendecomposition problem has been widely employed in many signal processing applications. In this paper, we propose a unified and self-stabilizing algorithm, which is able to extract the first principal and minor generalized eigenvectors of a matrix pencil of two vector sequences adaptively. Furthermore, we extend the proposed algorithm to extract multiple generalized eigenvectors. The performance analysis shows that only the desired equilibrium point of the proposed algorithm is stable and all others are (unstable) repellers or saddle points. Convergence analysis based on the deterministic discrete-time approach shows that, for a step size within a certain range, the norm of the principal/minor state vector converges to a fixed value that relates to the corresponding principal/minor generalized eigenvalue. Thus, the proposed algorithm is a generalized eigenpairs (eigenvectors and eigenvalues) extraction algorithm. Finally, the simulation experiments are carried to further demonstrate the efficiency of the proposed algorithm.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>27740501</pmid><doi>10.1109/TNNLS.2016.2614130</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2084-7826</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2017-12, Vol.28 (12), p.3032-3044
issn 2162-237X
2162-2388
language eng
recordid cdi_crossref_primary_10_1109_TNNLS_2016_2614130
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Algorithms
Computer simulation
Convergence
Covariance matrices
Data processing
Deterministic discrete-time (DDT) approach
Eigenvalues
Eigenvalues and eigenfunctions
Eigenvectors
Estimation
generalized eigendecomposition (GED)
generalized eigenpair
Mathematical analysis
Matrix algebra
Matrix methods
Neural networks
Saddle points
Signal processing
Signal processing algorithms
unified algorithm
title A Novel Unified and Self-Stabilizing Algorithm for Generalized Eigenpairs Extraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A08%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Unified%20and%20Self-Stabilizing%20Algorithm%20for%20Generalized%20Eigenpairs%20Extraction&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Feng,%20Xiaowei&rft.date=2017-12-01&rft.volume=28&rft.issue=12&rft.spage=3032&rft.epage=3044&rft.pages=3032-3044&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2016.2614130&rft_dat=%3Cproquest_RIE%3E1835410372%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1966232585&rft_id=info:pmid/27740501&rft_ieee_id=7587340&rfr_iscdi=true