RBF Networks Under the Concurrent Fault Situation

Fault tolerance is an interesting topic in neural networks. However, many existing results on this topic focus only on the situation of a single fault source. In fact, a trained network may be affected by multiple fault sources. This brief studies the performance of faulty radial basis function (RBF...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2012-07, Vol.23 (7), p.1148-1155
Hauptverfasser: Chi-Sing Leung, Sum, J. P-F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1155
container_issue 7
container_start_page 1148
container_title IEEE transaction on neural networks and learning systems
container_volume 23
creator Chi-Sing Leung
Sum, J. P-F
description Fault tolerance is an interesting topic in neural networks. However, many existing results on this topic focus only on the situation of a single fault source. In fact, a trained network may be affected by multiple fault sources. This brief studies the performance of faulty radial basis function (RBF) networks that suffer from multiplicative weight noise and open weight fault concurrently. We derive a mean prediction error (MPE) formula to estimate the generalization ability of faulty networks. The MPE formula provides us a way to understand the generalization ability of faulty networks without using a test set or generating a number of potential faulty networks. Based on the MPE result, we propose methods to optimize the regularization parameter, as well as the RBF width.
doi_str_mv 10.1109/TNNLS.2012.2196054
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNNLS_2012_2196054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6203419</ieee_id><sourcerecordid>2686197401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-b0cb51cdfb13b54c50ce274f140d5b13f037851960b5f3e15d4045b37e4a37ec3</originalsourceid><addsrcrecordid>eNqFkN9LwzAQgIMobsz9AwpSEMGXzlx-tXvU4VQYE9wGvpU0TbGza2eSIv73pq5O8MU8JEfy3V3uQ-gU8AgAj6-X8_lsMSIYyIjAWGDODlCfgCAhoXF8uI-jlx4aWrvGfnlKsPEx6hEW4wgY7iN4vp0Gc-0-avNmg1WVaRO4Vx1M6ko1xujKBVPZlC5YFK6RrqirE3SUy9LqYXcO0Gp6t5w8hLOn-8fJzSxUDJgLU6xSDirLU6ApZ4pjpUnEct814_4uxzSKefvzlOdUA88YZjylkWbSb4oO0NWu7tbU7422LtkUVumylJWuG5uAiIAKygD_j3JCGaaUc49e_EHXdWMqP0gC2NuMiWDgKbKjlKmtNTpPtqbYSPPpoaTVn3zrT1r9SaffJ513pZt0o7N9yo9sD1x2gLRKlrmRlSrsLyf8PEDb7mc7rtBa758FwX7YMf0C5c6SPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1020182641</pqid></control><display><type>article</type><title>RBF Networks Under the Concurrent Fault Situation</title><source>IEEE Electronic Library (IEL)</source><creator>Chi-Sing Leung ; Sum, J. P-F</creator><creatorcontrib>Chi-Sing Leung ; Sum, J. P-F</creatorcontrib><description>Fault tolerance is an interesting topic in neural networks. However, many existing results on this topic focus only on the situation of a single fault source. In fact, a trained network may be affected by multiple fault sources. This brief studies the performance of faulty radial basis function (RBF) networks that suffer from multiplicative weight noise and open weight fault concurrently. We derive a mean prediction error (MPE) formula to estimate the generalization ability of faulty networks. The MPE formula provides us a way to understand the generalization ability of faulty networks without using a test set or generating a number of potential faulty networks. Based on the MPE result, we propose methods to optimize the regularization parameter, as well as the RBF width.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2012.2196054</identifier><identifier>PMID: 24807140</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Circuit faults ; Computer science; control theory; systems ; Computer systems performance. Reliability ; Connectionism. Neural networks ; Errors ; Estimates ; Exact sciences and technology ; Fault tolerance ; Faults ; Learning ; Learning systems ; Networks ; Neural networks ; Noise ; prediction error ; Radial basis function networks ; RBF ; Regularization ; Search methods ; Software ; Training ; Vectors ; weight decay</subject><ispartof>IEEE transaction on neural networks and learning systems, 2012-07, Vol.23 (7), p.1148-1155</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2012</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-b0cb51cdfb13b54c50ce274f140d5b13f037851960b5f3e15d4045b37e4a37ec3</citedby><cites>FETCH-LOGICAL-c414t-b0cb51cdfb13b54c50ce274f140d5b13f037851960b5f3e15d4045b37e4a37ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6203419$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6203419$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26136131$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24807140$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chi-Sing Leung</creatorcontrib><creatorcontrib>Sum, J. P-F</creatorcontrib><title>RBF Networks Under the Concurrent Fault Situation</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Fault tolerance is an interesting topic in neural networks. However, many existing results on this topic focus only on the situation of a single fault source. In fact, a trained network may be affected by multiple fault sources. This brief studies the performance of faulty radial basis function (RBF) networks that suffer from multiplicative weight noise and open weight fault concurrently. We derive a mean prediction error (MPE) formula to estimate the generalization ability of faulty networks. The MPE formula provides us a way to understand the generalization ability of faulty networks without using a test set or generating a number of potential faulty networks. Based on the MPE result, we propose methods to optimize the regularization parameter, as well as the RBF width.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Circuit faults</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems performance. Reliability</subject><subject>Connectionism. Neural networks</subject><subject>Errors</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Fault tolerance</subject><subject>Faults</subject><subject>Learning</subject><subject>Learning systems</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Noise</subject><subject>prediction error</subject><subject>Radial basis function networks</subject><subject>RBF</subject><subject>Regularization</subject><subject>Search methods</subject><subject>Software</subject><subject>Training</subject><subject>Vectors</subject><subject>weight decay</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkN9LwzAQgIMobsz9AwpSEMGXzlx-tXvU4VQYE9wGvpU0TbGza2eSIv73pq5O8MU8JEfy3V3uQ-gU8AgAj6-X8_lsMSIYyIjAWGDODlCfgCAhoXF8uI-jlx4aWrvGfnlKsPEx6hEW4wgY7iN4vp0Gc-0-avNmg1WVaRO4Vx1M6ko1xujKBVPZlC5YFK6RrqirE3SUy9LqYXcO0Gp6t5w8hLOn-8fJzSxUDJgLU6xSDirLU6ApZ4pjpUnEct814_4uxzSKefvzlOdUA88YZjylkWbSb4oO0NWu7tbU7422LtkUVumylJWuG5uAiIAKygD_j3JCGaaUc49e_EHXdWMqP0gC2NuMiWDgKbKjlKmtNTpPtqbYSPPpoaTVn3zrT1r9SaffJ513pZt0o7N9yo9sD1x2gLRKlrmRlSrsLyf8PEDb7mc7rtBa758FwX7YMf0C5c6SPA</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Chi-Sing Leung</creator><creator>Sum, J. P-F</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20120701</creationdate><title>RBF Networks Under the Concurrent Fault Situation</title><author>Chi-Sing Leung ; Sum, J. P-F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-b0cb51cdfb13b54c50ce274f140d5b13f037851960b5f3e15d4045b37e4a37ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Circuit faults</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems performance. Reliability</topic><topic>Connectionism. Neural networks</topic><topic>Errors</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Fault tolerance</topic><topic>Faults</topic><topic>Learning</topic><topic>Learning systems</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Noise</topic><topic>prediction error</topic><topic>Radial basis function networks</topic><topic>RBF</topic><topic>Regularization</topic><topic>Search methods</topic><topic>Software</topic><topic>Training</topic><topic>Vectors</topic><topic>weight decay</topic><toplevel>online_resources</toplevel><creatorcontrib>Chi-Sing Leung</creatorcontrib><creatorcontrib>Sum, J. P-F</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chi-Sing Leung</au><au>Sum, J. P-F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RBF Networks Under the Concurrent Fault Situation</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2012-07-01</date><risdate>2012</risdate><volume>23</volume><issue>7</issue><spage>1148</spage><epage>1155</epage><pages>1148-1155</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Fault tolerance is an interesting topic in neural networks. However, many existing results on this topic focus only on the situation of a single fault source. In fact, a trained network may be affected by multiple fault sources. This brief studies the performance of faulty radial basis function (RBF) networks that suffer from multiplicative weight noise and open weight fault concurrently. We derive a mean prediction error (MPE) formula to estimate the generalization ability of faulty networks. The MPE formula provides us a way to understand the generalization ability of faulty networks without using a test set or generating a number of potential faulty networks. Based on the MPE result, we propose methods to optimize the regularization parameter, as well as the RBF width.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>24807140</pmid><doi>10.1109/TNNLS.2012.2196054</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2012-07, Vol.23 (7), p.1148-1155
issn 2162-237X
2162-2388
language eng
recordid cdi_crossref_primary_10_1109_TNNLS_2012_2196054
source IEEE Electronic Library (IEL)
subjects Applied sciences
Artificial intelligence
Circuit faults
Computer science
control theory
systems
Computer systems performance. Reliability
Connectionism. Neural networks
Errors
Estimates
Exact sciences and technology
Fault tolerance
Faults
Learning
Learning systems
Networks
Neural networks
Noise
prediction error
Radial basis function networks
RBF
Regularization
Search methods
Software
Training
Vectors
weight decay
title RBF Networks Under the Concurrent Fault Situation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A15%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RBF%20Networks%20Under%20the%20Concurrent%20Fault%20Situation&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Chi-Sing%20Leung&rft.date=2012-07-01&rft.volume=23&rft.issue=7&rft.spage=1148&rft.epage=1155&rft.pages=1148-1155&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2012.2196054&rft_dat=%3Cproquest_RIE%3E2686197401%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1020182641&rft_id=info:pmid/24807140&rft_ieee_id=6203419&rfr_iscdi=true