RBF Networks Under the Concurrent Fault Situation
Fault tolerance is an interesting topic in neural networks. However, many existing results on this topic focus only on the situation of a single fault source. In fact, a trained network may be affected by multiple fault sources. This brief studies the performance of faulty radial basis function (RBF...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2012-07, Vol.23 (7), p.1148-1155 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1155 |
---|---|
container_issue | 7 |
container_start_page | 1148 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 23 |
creator | Chi-Sing Leung Sum, J. P-F |
description | Fault tolerance is an interesting topic in neural networks. However, many existing results on this topic focus only on the situation of a single fault source. In fact, a trained network may be affected by multiple fault sources. This brief studies the performance of faulty radial basis function (RBF) networks that suffer from multiplicative weight noise and open weight fault concurrently. We derive a mean prediction error (MPE) formula to estimate the generalization ability of faulty networks. The MPE formula provides us a way to understand the generalization ability of faulty networks without using a test set or generating a number of potential faulty networks. Based on the MPE result, we propose methods to optimize the regularization parameter, as well as the RBF width. |
doi_str_mv | 10.1109/TNNLS.2012.2196054 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNNLS_2012_2196054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6203419</ieee_id><sourcerecordid>2686197401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-b0cb51cdfb13b54c50ce274f140d5b13f037851960b5f3e15d4045b37e4a37ec3</originalsourceid><addsrcrecordid>eNqFkN9LwzAQgIMobsz9AwpSEMGXzlx-tXvU4VQYE9wGvpU0TbGza2eSIv73pq5O8MU8JEfy3V3uQ-gU8AgAj6-X8_lsMSIYyIjAWGDODlCfgCAhoXF8uI-jlx4aWrvGfnlKsPEx6hEW4wgY7iN4vp0Gc-0-avNmg1WVaRO4Vx1M6ko1xujKBVPZlC5YFK6RrqirE3SUy9LqYXcO0Gp6t5w8hLOn-8fJzSxUDJgLU6xSDirLU6ApZ4pjpUnEct814_4uxzSKefvzlOdUA88YZjylkWbSb4oO0NWu7tbU7422LtkUVumylJWuG5uAiIAKygD_j3JCGaaUc49e_EHXdWMqP0gC2NuMiWDgKbKjlKmtNTpPtqbYSPPpoaTVn3zrT1r9SaffJ513pZt0o7N9yo9sD1x2gLRKlrmRlSrsLyf8PEDb7mc7rtBa758FwX7YMf0C5c6SPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1020182641</pqid></control><display><type>article</type><title>RBF Networks Under the Concurrent Fault Situation</title><source>IEEE Electronic Library (IEL)</source><creator>Chi-Sing Leung ; Sum, J. P-F</creator><creatorcontrib>Chi-Sing Leung ; Sum, J. P-F</creatorcontrib><description>Fault tolerance is an interesting topic in neural networks. However, many existing results on this topic focus only on the situation of a single fault source. In fact, a trained network may be affected by multiple fault sources. This brief studies the performance of faulty radial basis function (RBF) networks that suffer from multiplicative weight noise and open weight fault concurrently. We derive a mean prediction error (MPE) formula to estimate the generalization ability of faulty networks. The MPE formula provides us a way to understand the generalization ability of faulty networks without using a test set or generating a number of potential faulty networks. Based on the MPE result, we propose methods to optimize the regularization parameter, as well as the RBF width.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2012.2196054</identifier><identifier>PMID: 24807140</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Circuit faults ; Computer science; control theory; systems ; Computer systems performance. Reliability ; Connectionism. Neural networks ; Errors ; Estimates ; Exact sciences and technology ; Fault tolerance ; Faults ; Learning ; Learning systems ; Networks ; Neural networks ; Noise ; prediction error ; Radial basis function networks ; RBF ; Regularization ; Search methods ; Software ; Training ; Vectors ; weight decay</subject><ispartof>IEEE transaction on neural networks and learning systems, 2012-07, Vol.23 (7), p.1148-1155</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2012</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-b0cb51cdfb13b54c50ce274f140d5b13f037851960b5f3e15d4045b37e4a37ec3</citedby><cites>FETCH-LOGICAL-c414t-b0cb51cdfb13b54c50ce274f140d5b13f037851960b5f3e15d4045b37e4a37ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6203419$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6203419$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26136131$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24807140$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chi-Sing Leung</creatorcontrib><creatorcontrib>Sum, J. P-F</creatorcontrib><title>RBF Networks Under the Concurrent Fault Situation</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Fault tolerance is an interesting topic in neural networks. However, many existing results on this topic focus only on the situation of a single fault source. In fact, a trained network may be affected by multiple fault sources. This brief studies the performance of faulty radial basis function (RBF) networks that suffer from multiplicative weight noise and open weight fault concurrently. We derive a mean prediction error (MPE) formula to estimate the generalization ability of faulty networks. The MPE formula provides us a way to understand the generalization ability of faulty networks without using a test set or generating a number of potential faulty networks. Based on the MPE result, we propose methods to optimize the regularization parameter, as well as the RBF width.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Circuit faults</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems performance. Reliability</subject><subject>Connectionism. Neural networks</subject><subject>Errors</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Fault tolerance</subject><subject>Faults</subject><subject>Learning</subject><subject>Learning systems</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Noise</subject><subject>prediction error</subject><subject>Radial basis function networks</subject><subject>RBF</subject><subject>Regularization</subject><subject>Search methods</subject><subject>Software</subject><subject>Training</subject><subject>Vectors</subject><subject>weight decay</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkN9LwzAQgIMobsz9AwpSEMGXzlx-tXvU4VQYE9wGvpU0TbGza2eSIv73pq5O8MU8JEfy3V3uQ-gU8AgAj6-X8_lsMSIYyIjAWGDODlCfgCAhoXF8uI-jlx4aWrvGfnlKsPEx6hEW4wgY7iN4vp0Gc-0-avNmg1WVaRO4Vx1M6ko1xujKBVPZlC5YFK6RrqirE3SUy9LqYXcO0Gp6t5w8hLOn-8fJzSxUDJgLU6xSDirLU6ApZ4pjpUnEct814_4uxzSKefvzlOdUA88YZjylkWbSb4oO0NWu7tbU7422LtkUVumylJWuG5uAiIAKygD_j3JCGaaUc49e_EHXdWMqP0gC2NuMiWDgKbKjlKmtNTpPtqbYSPPpoaTVn3zrT1r9SaffJ513pZt0o7N9yo9sD1x2gLRKlrmRlSrsLyf8PEDb7mc7rtBa758FwX7YMf0C5c6SPA</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Chi-Sing Leung</creator><creator>Sum, J. P-F</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20120701</creationdate><title>RBF Networks Under the Concurrent Fault Situation</title><author>Chi-Sing Leung ; Sum, J. P-F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-b0cb51cdfb13b54c50ce274f140d5b13f037851960b5f3e15d4045b37e4a37ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Circuit faults</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems performance. Reliability</topic><topic>Connectionism. Neural networks</topic><topic>Errors</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Fault tolerance</topic><topic>Faults</topic><topic>Learning</topic><topic>Learning systems</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Noise</topic><topic>prediction error</topic><topic>Radial basis function networks</topic><topic>RBF</topic><topic>Regularization</topic><topic>Search methods</topic><topic>Software</topic><topic>Training</topic><topic>Vectors</topic><topic>weight decay</topic><toplevel>online_resources</toplevel><creatorcontrib>Chi-Sing Leung</creatorcontrib><creatorcontrib>Sum, J. P-F</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chi-Sing Leung</au><au>Sum, J. P-F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RBF Networks Under the Concurrent Fault Situation</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2012-07-01</date><risdate>2012</risdate><volume>23</volume><issue>7</issue><spage>1148</spage><epage>1155</epage><pages>1148-1155</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Fault tolerance is an interesting topic in neural networks. However, many existing results on this topic focus only on the situation of a single fault source. In fact, a trained network may be affected by multiple fault sources. This brief studies the performance of faulty radial basis function (RBF) networks that suffer from multiplicative weight noise and open weight fault concurrently. We derive a mean prediction error (MPE) formula to estimate the generalization ability of faulty networks. The MPE formula provides us a way to understand the generalization ability of faulty networks without using a test set or generating a number of potential faulty networks. Based on the MPE result, we propose methods to optimize the regularization parameter, as well as the RBF width.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>24807140</pmid><doi>10.1109/TNNLS.2012.2196054</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2012-07, Vol.23 (7), p.1148-1155 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TNNLS_2012_2196054 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Artificial intelligence Circuit faults Computer science control theory systems Computer systems performance. Reliability Connectionism. Neural networks Errors Estimates Exact sciences and technology Fault tolerance Faults Learning Learning systems Networks Neural networks Noise prediction error Radial basis function networks RBF Regularization Search methods Software Training Vectors weight decay |
title | RBF Networks Under the Concurrent Fault Situation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A15%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RBF%20Networks%20Under%20the%20Concurrent%20Fault%20Situation&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Chi-Sing%20Leung&rft.date=2012-07-01&rft.volume=23&rft.issue=7&rft.spage=1148&rft.epage=1155&rft.pages=1148-1155&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2012.2196054&rft_dat=%3Cproquest_RIE%3E2686197401%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1020182641&rft_id=info:pmid/24807140&rft_ieee_id=6203419&rfr_iscdi=true |