Multi-Tenant Radio Access Network Slicing: Statistical Multiplexing of Spatial Loads

This paper addresses the slicing of radio access network resources by multiple tenants, e.g., virtual wireless operators and service providers. We consider a criterion for dynamic resource allocation amongst tenants, based on a weighted proportionally fair objective, which achieves desirable fairnes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on networking 2017-10, Vol.25 (5), p.3044-3058
Hauptverfasser: Caballero, Pablo, Banchs, Albert, de Veciana, Gustavo, Costa-Perez, Xavier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3058
container_issue 5
container_start_page 3044
container_title IEEE/ACM transactions on networking
container_volume 25
creator Caballero, Pablo
Banchs, Albert
de Veciana, Gustavo
Costa-Perez, Xavier
description This paper addresses the slicing of radio access network resources by multiple tenants, e.g., virtual wireless operators and service providers. We consider a criterion for dynamic resource allocation amongst tenants, based on a weighted proportionally fair objective, which achieves desirable fairness/protection across the network slices of the different tenants and their associated users. Several key properties are established, including: the Pareto-optimality of user association to base stations, the fair allocation of base stations' resources, and the gains resulting from dynamic resource sharing across slices, both in terms of utility gains and capacity savings. We then address algorithmic and practical challenges in realizing the proposed criterion. We show that the objective is NP-hard, making an exact solution impractical, and design a distributed semi-online algorithm, which meets performance guarantees in equilibrium and can be shown to quickly converge to a region around the equilibrium point. Building on this algorithm, we devise a practical approach with limited computational information and handoff overheads. We use detailed simulations to show that our approach is indeed near-optimal and provides substantial gains both to tenants (in terms of capacity savings) and end users (in terms of improved performance).
doi_str_mv 10.1109/TNET.2017.2720668
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNET_2017_2720668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7982693</ieee_id><sourcerecordid>2174496021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-80e0e765d655bf29b4cded4dd7583b6c106719c040ec58da0b465c0b58b720443</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwAYiNJdYpY8d2EnZVVR5SKRINa8uxHeQSkhA7Av4el1asZjRz7zwOQpcEZoRAcVOul-WMAslmNKMgRH6EJoTzPKFciOOYg0gTIQp6is683wKQFKiYoPJpbIJLStuqNuAXZVyH51pb7_Hahq9ueMebxmnXvt3iTVDB-eC0avCfrW_sd-zgrsabPvZifdUp48_RSa0aby8OcYpe75bl4iFZPd8_LuarRDOgIcnBgs0EN4LzqqZFxbSxhhmT8TythI43Z6TQwMBqnhsFFRNcQ8XzKv7IWDpF1_u5_dB9jtYHue3GoY0rJSUZY4UASqKK7FV66LwfbC37wX2o4UcSkDt4cgdP7uDJA7zoudp7nLX2X58VORVFmv4CxKFqgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174496021</pqid></control><display><type>article</type><title>Multi-Tenant Radio Access Network Slicing: Statistical Multiplexing of Spatial Loads</title><source>IEEE Electronic Library (IEL)</source><creator>Caballero, Pablo ; Banchs, Albert ; de Veciana, Gustavo ; Costa-Perez, Xavier</creator><creatorcontrib>Caballero, Pablo ; Banchs, Albert ; de Veciana, Gustavo ; Costa-Perez, Xavier</creatorcontrib><description>This paper addresses the slicing of radio access network resources by multiple tenants, e.g., virtual wireless operators and service providers. We consider a criterion for dynamic resource allocation amongst tenants, based on a weighted proportionally fair objective, which achieves desirable fairness/protection across the network slices of the different tenants and their associated users. Several key properties are established, including: the Pareto-optimality of user association to base stations, the fair allocation of base stations' resources, and the gains resulting from dynamic resource sharing across slices, both in terms of utility gains and capacity savings. We then address algorithmic and practical challenges in realizing the proposed criterion. We show that the objective is NP-hard, making an exact solution impractical, and design a distributed semi-online algorithm, which meets performance guarantees in equilibrium and can be shown to quickly converge to a region around the equilibrium point. Building on this algorithm, we devise a practical approach with limited computational information and handoff overheads. We use detailed simulations to show that our approach is indeed near-optimal and provides substantial gains both to tenants (in terms of capacity savings) and end users (in terms of improved performance).</description><identifier>ISSN: 1063-6692</identifier><identifier>EISSN: 1558-2566</identifier><identifier>DOI: 10.1109/TNET.2017.2720668</identifier><identifier>CODEN: IEANEP</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Base stations ; Computer simulation ; Criteria ; Dynamic scheduling ; End users ; Heuristic algorithms ; Mobile communication ; Mobile computing ; multi-tenant networks ; Multiplexing ; Network slicing ; Optimization ; RAN-sharing ; Resource allocation ; Resource management ; Stations ; Telecommunications industry ; Tenants ; Wireless networks</subject><ispartof>IEEE/ACM transactions on networking, 2017-10, Vol.25 (5), p.3044-3058</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-80e0e765d655bf29b4cded4dd7583b6c106719c040ec58da0b465c0b58b720443</citedby><cites>FETCH-LOGICAL-c402t-80e0e765d655bf29b4cded4dd7583b6c106719c040ec58da0b465c0b58b720443</cites><orcidid>0000-0002-3979-4771</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7982693$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7982693$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Caballero, Pablo</creatorcontrib><creatorcontrib>Banchs, Albert</creatorcontrib><creatorcontrib>de Veciana, Gustavo</creatorcontrib><creatorcontrib>Costa-Perez, Xavier</creatorcontrib><title>Multi-Tenant Radio Access Network Slicing: Statistical Multiplexing of Spatial Loads</title><title>IEEE/ACM transactions on networking</title><addtitle>TNET</addtitle><description>This paper addresses the slicing of radio access network resources by multiple tenants, e.g., virtual wireless operators and service providers. We consider a criterion for dynamic resource allocation amongst tenants, based on a weighted proportionally fair objective, which achieves desirable fairness/protection across the network slices of the different tenants and their associated users. Several key properties are established, including: the Pareto-optimality of user association to base stations, the fair allocation of base stations' resources, and the gains resulting from dynamic resource sharing across slices, both in terms of utility gains and capacity savings. We then address algorithmic and practical challenges in realizing the proposed criterion. We show that the objective is NP-hard, making an exact solution impractical, and design a distributed semi-online algorithm, which meets performance guarantees in equilibrium and can be shown to quickly converge to a region around the equilibrium point. Building on this algorithm, we devise a practical approach with limited computational information and handoff overheads. We use detailed simulations to show that our approach is indeed near-optimal and provides substantial gains both to tenants (in terms of capacity savings) and end users (in terms of improved performance).</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Base stations</subject><subject>Computer simulation</subject><subject>Criteria</subject><subject>Dynamic scheduling</subject><subject>End users</subject><subject>Heuristic algorithms</subject><subject>Mobile communication</subject><subject>Mobile computing</subject><subject>multi-tenant networks</subject><subject>Multiplexing</subject><subject>Network slicing</subject><subject>Optimization</subject><subject>RAN-sharing</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Stations</subject><subject>Telecommunications industry</subject><subject>Tenants</subject><subject>Wireless networks</subject><issn>1063-6692</issn><issn>1558-2566</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwAYiNJdYpY8d2EnZVVR5SKRINa8uxHeQSkhA7Av4el1asZjRz7zwOQpcEZoRAcVOul-WMAslmNKMgRH6EJoTzPKFciOOYg0gTIQp6is683wKQFKiYoPJpbIJLStuqNuAXZVyH51pb7_Hahq9ueMebxmnXvt3iTVDB-eC0avCfrW_sd-zgrsabPvZifdUp48_RSa0aby8OcYpe75bl4iFZPd8_LuarRDOgIcnBgs0EN4LzqqZFxbSxhhmT8TythI43Z6TQwMBqnhsFFRNcQ8XzKv7IWDpF1_u5_dB9jtYHue3GoY0rJSUZY4UASqKK7FV66LwfbC37wX2o4UcSkDt4cgdP7uDJA7zoudp7nLX2X58VORVFmv4CxKFqgw</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Caballero, Pablo</creator><creator>Banchs, Albert</creator><creator>de Veciana, Gustavo</creator><creator>Costa-Perez, Xavier</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3979-4771</orcidid></search><sort><creationdate>201710</creationdate><title>Multi-Tenant Radio Access Network Slicing: Statistical Multiplexing of Spatial Loads</title><author>Caballero, Pablo ; Banchs, Albert ; de Veciana, Gustavo ; Costa-Perez, Xavier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-80e0e765d655bf29b4cded4dd7583b6c106719c040ec58da0b465c0b58b720443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Base stations</topic><topic>Computer simulation</topic><topic>Criteria</topic><topic>Dynamic scheduling</topic><topic>End users</topic><topic>Heuristic algorithms</topic><topic>Mobile communication</topic><topic>Mobile computing</topic><topic>multi-tenant networks</topic><topic>Multiplexing</topic><topic>Network slicing</topic><topic>Optimization</topic><topic>RAN-sharing</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Stations</topic><topic>Telecommunications industry</topic><topic>Tenants</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caballero, Pablo</creatorcontrib><creatorcontrib>Banchs, Albert</creatorcontrib><creatorcontrib>de Veciana, Gustavo</creatorcontrib><creatorcontrib>Costa-Perez, Xavier</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ACM transactions on networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Caballero, Pablo</au><au>Banchs, Albert</au><au>de Veciana, Gustavo</au><au>Costa-Perez, Xavier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Tenant Radio Access Network Slicing: Statistical Multiplexing of Spatial Loads</atitle><jtitle>IEEE/ACM transactions on networking</jtitle><stitle>TNET</stitle><date>2017-10</date><risdate>2017</risdate><volume>25</volume><issue>5</issue><spage>3044</spage><epage>3058</epage><pages>3044-3058</pages><issn>1063-6692</issn><eissn>1558-2566</eissn><coden>IEANEP</coden><abstract>This paper addresses the slicing of radio access network resources by multiple tenants, e.g., virtual wireless operators and service providers. We consider a criterion for dynamic resource allocation amongst tenants, based on a weighted proportionally fair objective, which achieves desirable fairness/protection across the network slices of the different tenants and their associated users. Several key properties are established, including: the Pareto-optimality of user association to base stations, the fair allocation of base stations' resources, and the gains resulting from dynamic resource sharing across slices, both in terms of utility gains and capacity savings. We then address algorithmic and practical challenges in realizing the proposed criterion. We show that the objective is NP-hard, making an exact solution impractical, and design a distributed semi-online algorithm, which meets performance guarantees in equilibrium and can be shown to quickly converge to a region around the equilibrium point. Building on this algorithm, we devise a practical approach with limited computational information and handoff overheads. We use detailed simulations to show that our approach is indeed near-optimal and provides substantial gains both to tenants (in terms of capacity savings) and end users (in terms of improved performance).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNET.2017.2720668</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3979-4771</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6692
ispartof IEEE/ACM transactions on networking, 2017-10, Vol.25 (5), p.3044-3058
issn 1063-6692
1558-2566
language eng
recordid cdi_crossref_primary_10_1109_TNET_2017_2720668
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Algorithms
Base stations
Computer simulation
Criteria
Dynamic scheduling
End users
Heuristic algorithms
Mobile communication
Mobile computing
multi-tenant networks
Multiplexing
Network slicing
Optimization
RAN-sharing
Resource allocation
Resource management
Stations
Telecommunications industry
Tenants
Wireless networks
title Multi-Tenant Radio Access Network Slicing: Statistical Multiplexing of Spatial Loads
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A18%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Tenant%20Radio%20Access%20Network%20Slicing:%20Statistical%20Multiplexing%20of%20Spatial%20Loads&rft.jtitle=IEEE/ACM%20transactions%20on%20networking&rft.au=Caballero,%20Pablo&rft.date=2017-10&rft.volume=25&rft.issue=5&rft.spage=3044&rft.epage=3058&rft.pages=3044-3058&rft.issn=1063-6692&rft.eissn=1558-2566&rft.coden=IEANEP&rft_id=info:doi/10.1109/TNET.2017.2720668&rft_dat=%3Cproquest_RIE%3E2174496021%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174496021&rft_id=info:pmid/&rft_ieee_id=7982693&rfr_iscdi=true