Social Network De-Anonymization Under Scale-Free User Relations
We tackle the problem of user de-anonymization in social networks characterized by scale-free relationships between users. The network is modeled as a graph capturing the impact of power-law node degree distribution, which is a fundamental and quite common feature of social networks. Using this mode...
Gespeichert in:
Veröffentlicht in: | IEEE/ACM transactions on networking 2016-12, Vol.24 (6), p.3756-3769 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3769 |
---|---|
container_issue | 6 |
container_start_page | 3756 |
container_title | IEEE/ACM transactions on networking |
container_volume | 24 |
creator | Chiasserini, Carla-Fabiana Garetto, Michele Leonardi, Emilio |
description | We tackle the problem of user de-anonymization in social networks characterized by scale-free relationships between users. The network is modeled as a graph capturing the impact of power-law node degree distribution, which is a fundamental and quite common feature of social networks. Using this model, we present a de-anonymization algorithm that exploits an initial set of users, called seeds, that are known a priori. By employing the bootstrap percolation theory and a novel graph slicing technique, we develop a rigorous analysis of the proposed algorithm under asymptotic conditions. Our analysis shows that large inhomogeneities in the node degree lead to a dramatic reduction in the size of the seed set that is necessary to successfully identify all the other users. We characterize this set size when seeds are properly selected based on the node degree as well as when seeds are uniformly distributed. We prove that, given n nodes, the number of seeds required for network de-anonymization can be as small as n ∈ , for any small ∈ > 0. In addition, we discuss the complexity of our de-anonymization algorithm and validate our results through numerical experiments on a real social network graph. |
doi_str_mv | 10.1109/TNET.2016.2553843 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNET_2016_2553843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7460134</ieee_id><sourcerecordid>1850255426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-a99cf641c825c14e67ddb463773df17cec748b332ca8fec749ac5a22062127633</originalsourceid><addsrcrecordid>eNo9kFtLw0AQhRdRsF5-gPgS8Dl1r5PkSUptVSgVbPu8bDcTSE2zdTdF6q93Y4tPM4c5Z4b5CLljdMgYLR6X88lyyCmDIVdK5FKckQFTKk-5AjiPPQWRAhT8klyFsKGUCcphQJ4WztamSebYfTv_mTxjOmpde9jWP6arXZus2hJ9srCmwXTqEZNViPoDm79xuCEXlWkC3p7qNVlNJ8vxazp7f3kbj2apFQK61BSFrUAym3NlmUTIynItQWSZKCuWWbSZzNdCcGvyqheFscpwToEznoEQ1-ThuHfn3dceQ6c3bu_beFKzXNH4tOQQXezost6F4LHSO19vjT9oRnXPSfecdM9JnzjFzP0xUyPivz-TEBFJ8QuZZmKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1850255426</pqid></control><display><type>article</type><title>Social Network De-Anonymization Under Scale-Free User Relations</title><source>IEEE Electronic Library (IEL)</source><creator>Chiasserini, Carla-Fabiana ; Garetto, Michele ; Leonardi, Emilio</creator><creatorcontrib>Chiasserini, Carla-Fabiana ; Garetto, Michele ; Leonardi, Emilio</creatorcontrib><description>We tackle the problem of user de-anonymization in social networks characterized by scale-free relationships between users. The network is modeled as a graph capturing the impact of power-law node degree distribution, which is a fundamental and quite common feature of social networks. Using this model, we present a de-anonymization algorithm that exploits an initial set of users, called seeds, that are known a priori. By employing the bootstrap percolation theory and a novel graph slicing technique, we develop a rigorous analysis of the proposed algorithm under asymptotic conditions. Our analysis shows that large inhomogeneities in the node degree lead to a dramatic reduction in the size of the seed set that is necessary to successfully identify all the other users. We characterize this set size when seeds are properly selected based on the node degree as well as when seeds are uniformly distributed. We prove that, given n nodes, the number of seeds required for network de-anonymization can be as small as n ∈ , for any small ∈ > 0. In addition, we discuss the complexity of our de-anonymization algorithm and validate our results through numerical experiments on a real social network graph.</description><identifier>ISSN: 1063-6692</identifier><identifier>EISSN: 1558-2566</identifier><identifier>DOI: 10.1109/TNET.2016.2553843</identifier><identifier>CODEN: IEANEP</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Anonymity ; Complexity theory ; Computer networks ; Electronic mail ; IEEE transactions ; Mathematical model ; Nodes ; online social networks ; Percolation theory ; Power law ; Privacy ; Seeds ; Slicing ; Social network services ; Social networks ; user de-anonymization</subject><ispartof>IEEE/ACM transactions on networking, 2016-12, Vol.24 (6), p.3756-3769</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-a99cf641c825c14e67ddb463773df17cec748b332ca8fec749ac5a22062127633</citedby><cites>FETCH-LOGICAL-c336t-a99cf641c825c14e67ddb463773df17cec748b332ca8fec749ac5a22062127633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7460134$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7460134$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chiasserini, Carla-Fabiana</creatorcontrib><creatorcontrib>Garetto, Michele</creatorcontrib><creatorcontrib>Leonardi, Emilio</creatorcontrib><title>Social Network De-Anonymization Under Scale-Free User Relations</title><title>IEEE/ACM transactions on networking</title><addtitle>TNET</addtitle><description>We tackle the problem of user de-anonymization in social networks characterized by scale-free relationships between users. The network is modeled as a graph capturing the impact of power-law node degree distribution, which is a fundamental and quite common feature of social networks. Using this model, we present a de-anonymization algorithm that exploits an initial set of users, called seeds, that are known a priori. By employing the bootstrap percolation theory and a novel graph slicing technique, we develop a rigorous analysis of the proposed algorithm under asymptotic conditions. Our analysis shows that large inhomogeneities in the node degree lead to a dramatic reduction in the size of the seed set that is necessary to successfully identify all the other users. We characterize this set size when seeds are properly selected based on the node degree as well as when seeds are uniformly distributed. We prove that, given n nodes, the number of seeds required for network de-anonymization can be as small as n ∈ , for any small ∈ > 0. In addition, we discuss the complexity of our de-anonymization algorithm and validate our results through numerical experiments on a real social network graph.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Anonymity</subject><subject>Complexity theory</subject><subject>Computer networks</subject><subject>Electronic mail</subject><subject>IEEE transactions</subject><subject>Mathematical model</subject><subject>Nodes</subject><subject>online social networks</subject><subject>Percolation theory</subject><subject>Power law</subject><subject>Privacy</subject><subject>Seeds</subject><subject>Slicing</subject><subject>Social network services</subject><subject>Social networks</subject><subject>user de-anonymization</subject><issn>1063-6692</issn><issn>1558-2566</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFtLw0AQhRdRsF5-gPgS8Dl1r5PkSUptVSgVbPu8bDcTSE2zdTdF6q93Y4tPM4c5Z4b5CLljdMgYLR6X88lyyCmDIVdK5FKckQFTKk-5AjiPPQWRAhT8klyFsKGUCcphQJ4WztamSebYfTv_mTxjOmpde9jWP6arXZus2hJ9srCmwXTqEZNViPoDm79xuCEXlWkC3p7qNVlNJ8vxazp7f3kbj2apFQK61BSFrUAym3NlmUTIynItQWSZKCuWWbSZzNdCcGvyqheFscpwToEznoEQ1-ThuHfn3dceQ6c3bu_beFKzXNH4tOQQXezost6F4LHSO19vjT9oRnXPSfecdM9JnzjFzP0xUyPivz-TEBFJ8QuZZmKQ</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Chiasserini, Carla-Fabiana</creator><creator>Garetto, Michele</creator><creator>Leonardi, Emilio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201612</creationdate><title>Social Network De-Anonymization Under Scale-Free User Relations</title><author>Chiasserini, Carla-Fabiana ; Garetto, Michele ; Leonardi, Emilio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-a99cf641c825c14e67ddb463773df17cec748b332ca8fec749ac5a22062127633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Anonymity</topic><topic>Complexity theory</topic><topic>Computer networks</topic><topic>Electronic mail</topic><topic>IEEE transactions</topic><topic>Mathematical model</topic><topic>Nodes</topic><topic>online social networks</topic><topic>Percolation theory</topic><topic>Power law</topic><topic>Privacy</topic><topic>Seeds</topic><topic>Slicing</topic><topic>Social network services</topic><topic>Social networks</topic><topic>user de-anonymization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiasserini, Carla-Fabiana</creatorcontrib><creatorcontrib>Garetto, Michele</creatorcontrib><creatorcontrib>Leonardi, Emilio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ACM transactions on networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chiasserini, Carla-Fabiana</au><au>Garetto, Michele</au><au>Leonardi, Emilio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Social Network De-Anonymization Under Scale-Free User Relations</atitle><jtitle>IEEE/ACM transactions on networking</jtitle><stitle>TNET</stitle><date>2016-12</date><risdate>2016</risdate><volume>24</volume><issue>6</issue><spage>3756</spage><epage>3769</epage><pages>3756-3769</pages><issn>1063-6692</issn><eissn>1558-2566</eissn><coden>IEANEP</coden><abstract>We tackle the problem of user de-anonymization in social networks characterized by scale-free relationships between users. The network is modeled as a graph capturing the impact of power-law node degree distribution, which is a fundamental and quite common feature of social networks. Using this model, we present a de-anonymization algorithm that exploits an initial set of users, called seeds, that are known a priori. By employing the bootstrap percolation theory and a novel graph slicing technique, we develop a rigorous analysis of the proposed algorithm under asymptotic conditions. Our analysis shows that large inhomogeneities in the node degree lead to a dramatic reduction in the size of the seed set that is necessary to successfully identify all the other users. We characterize this set size when seeds are properly selected based on the node degree as well as when seeds are uniformly distributed. We prove that, given n nodes, the number of seeds required for network de-anonymization can be as small as n ∈ , for any small ∈ > 0. In addition, we discuss the complexity of our de-anonymization algorithm and validate our results through numerical experiments on a real social network graph.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNET.2016.2553843</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6692 |
ispartof | IEEE/ACM transactions on networking, 2016-12, Vol.24 (6), p.3756-3769 |
issn | 1063-6692 1558-2566 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TNET_2016_2553843 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithm design and analysis Algorithms Anonymity Complexity theory Computer networks Electronic mail IEEE transactions Mathematical model Nodes online social networks Percolation theory Power law Privacy Seeds Slicing Social network services Social networks user de-anonymization |
title | Social Network De-Anonymization Under Scale-Free User Relations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A50%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Social%20Network%20De-Anonymization%20Under%20Scale-Free%20User%20Relations&rft.jtitle=IEEE/ACM%20transactions%20on%20networking&rft.au=Chiasserini,%20Carla-Fabiana&rft.date=2016-12&rft.volume=24&rft.issue=6&rft.spage=3756&rft.epage=3769&rft.pages=3756-3769&rft.issn=1063-6692&rft.eissn=1558-2566&rft.coden=IEANEP&rft_id=info:doi/10.1109/TNET.2016.2553843&rft_dat=%3Cproquest_RIE%3E1850255426%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1850255426&rft_id=info:pmid/&rft_ieee_id=7460134&rfr_iscdi=true |