Social Network De-Anonymization Under Scale-Free User Relations

We tackle the problem of user de-anonymization in social networks characterized by scale-free relationships between users. The network is modeled as a graph capturing the impact of power-law node degree distribution, which is a fundamental and quite common feature of social networks. Using this mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on networking 2016-12, Vol.24 (6), p.3756-3769
Hauptverfasser: Chiasserini, Carla-Fabiana, Garetto, Michele, Leonardi, Emilio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3769
container_issue 6
container_start_page 3756
container_title IEEE/ACM transactions on networking
container_volume 24
creator Chiasserini, Carla-Fabiana
Garetto, Michele
Leonardi, Emilio
description We tackle the problem of user de-anonymization in social networks characterized by scale-free relationships between users. The network is modeled as a graph capturing the impact of power-law node degree distribution, which is a fundamental and quite common feature of social networks. Using this model, we present a de-anonymization algorithm that exploits an initial set of users, called seeds, that are known a priori. By employing the bootstrap percolation theory and a novel graph slicing technique, we develop a rigorous analysis of the proposed algorithm under asymptotic conditions. Our analysis shows that large inhomogeneities in the node degree lead to a dramatic reduction in the size of the seed set that is necessary to successfully identify all the other users. We characterize this set size when seeds are properly selected based on the node degree as well as when seeds are uniformly distributed. We prove that, given n nodes, the number of seeds required for network de-anonymization can be as small as n ∈ , for any small ∈ > 0. In addition, we discuss the complexity of our de-anonymization algorithm and validate our results through numerical experiments on a real social network graph.
doi_str_mv 10.1109/TNET.2016.2553843
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNET_2016_2553843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7460134</ieee_id><sourcerecordid>1850255426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-a99cf641c825c14e67ddb463773df17cec748b332ca8fec749ac5a22062127633</originalsourceid><addsrcrecordid>eNo9kFtLw0AQhRdRsF5-gPgS8Dl1r5PkSUptVSgVbPu8bDcTSE2zdTdF6q93Y4tPM4c5Z4b5CLljdMgYLR6X88lyyCmDIVdK5FKckQFTKk-5AjiPPQWRAhT8klyFsKGUCcphQJ4WztamSebYfTv_mTxjOmpde9jWP6arXZus2hJ9srCmwXTqEZNViPoDm79xuCEXlWkC3p7qNVlNJ8vxazp7f3kbj2apFQK61BSFrUAym3NlmUTIynItQWSZKCuWWbSZzNdCcGvyqheFscpwToEznoEQ1-ThuHfn3dceQ6c3bu_beFKzXNH4tOQQXezost6F4LHSO19vjT9oRnXPSfecdM9JnzjFzP0xUyPivz-TEBFJ8QuZZmKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1850255426</pqid></control><display><type>article</type><title>Social Network De-Anonymization Under Scale-Free User Relations</title><source>IEEE Electronic Library (IEL)</source><creator>Chiasserini, Carla-Fabiana ; Garetto, Michele ; Leonardi, Emilio</creator><creatorcontrib>Chiasserini, Carla-Fabiana ; Garetto, Michele ; Leonardi, Emilio</creatorcontrib><description>We tackle the problem of user de-anonymization in social networks characterized by scale-free relationships between users. The network is modeled as a graph capturing the impact of power-law node degree distribution, which is a fundamental and quite common feature of social networks. Using this model, we present a de-anonymization algorithm that exploits an initial set of users, called seeds, that are known a priori. By employing the bootstrap percolation theory and a novel graph slicing technique, we develop a rigorous analysis of the proposed algorithm under asymptotic conditions. Our analysis shows that large inhomogeneities in the node degree lead to a dramatic reduction in the size of the seed set that is necessary to successfully identify all the other users. We characterize this set size when seeds are properly selected based on the node degree as well as when seeds are uniformly distributed. We prove that, given n nodes, the number of seeds required for network de-anonymization can be as small as n ∈ , for any small ∈ &gt; 0. In addition, we discuss the complexity of our de-anonymization algorithm and validate our results through numerical experiments on a real social network graph.</description><identifier>ISSN: 1063-6692</identifier><identifier>EISSN: 1558-2566</identifier><identifier>DOI: 10.1109/TNET.2016.2553843</identifier><identifier>CODEN: IEANEP</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Anonymity ; Complexity theory ; Computer networks ; Electronic mail ; IEEE transactions ; Mathematical model ; Nodes ; online social networks ; Percolation theory ; Power law ; Privacy ; Seeds ; Slicing ; Social network services ; Social networks ; user de-anonymization</subject><ispartof>IEEE/ACM transactions on networking, 2016-12, Vol.24 (6), p.3756-3769</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-a99cf641c825c14e67ddb463773df17cec748b332ca8fec749ac5a22062127633</citedby><cites>FETCH-LOGICAL-c336t-a99cf641c825c14e67ddb463773df17cec748b332ca8fec749ac5a22062127633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7460134$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7460134$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chiasserini, Carla-Fabiana</creatorcontrib><creatorcontrib>Garetto, Michele</creatorcontrib><creatorcontrib>Leonardi, Emilio</creatorcontrib><title>Social Network De-Anonymization Under Scale-Free User Relations</title><title>IEEE/ACM transactions on networking</title><addtitle>TNET</addtitle><description>We tackle the problem of user de-anonymization in social networks characterized by scale-free relationships between users. The network is modeled as a graph capturing the impact of power-law node degree distribution, which is a fundamental and quite common feature of social networks. Using this model, we present a de-anonymization algorithm that exploits an initial set of users, called seeds, that are known a priori. By employing the bootstrap percolation theory and a novel graph slicing technique, we develop a rigorous analysis of the proposed algorithm under asymptotic conditions. Our analysis shows that large inhomogeneities in the node degree lead to a dramatic reduction in the size of the seed set that is necessary to successfully identify all the other users. We characterize this set size when seeds are properly selected based on the node degree as well as when seeds are uniformly distributed. We prove that, given n nodes, the number of seeds required for network de-anonymization can be as small as n ∈ , for any small ∈ &gt; 0. In addition, we discuss the complexity of our de-anonymization algorithm and validate our results through numerical experiments on a real social network graph.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Anonymity</subject><subject>Complexity theory</subject><subject>Computer networks</subject><subject>Electronic mail</subject><subject>IEEE transactions</subject><subject>Mathematical model</subject><subject>Nodes</subject><subject>online social networks</subject><subject>Percolation theory</subject><subject>Power law</subject><subject>Privacy</subject><subject>Seeds</subject><subject>Slicing</subject><subject>Social network services</subject><subject>Social networks</subject><subject>user de-anonymization</subject><issn>1063-6692</issn><issn>1558-2566</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFtLw0AQhRdRsF5-gPgS8Dl1r5PkSUptVSgVbPu8bDcTSE2zdTdF6q93Y4tPM4c5Z4b5CLljdMgYLR6X88lyyCmDIVdK5FKckQFTKk-5AjiPPQWRAhT8klyFsKGUCcphQJ4WztamSebYfTv_mTxjOmpde9jWP6arXZus2hJ9srCmwXTqEZNViPoDm79xuCEXlWkC3p7qNVlNJ8vxazp7f3kbj2apFQK61BSFrUAym3NlmUTIynItQWSZKCuWWbSZzNdCcGvyqheFscpwToEznoEQ1-ThuHfn3dceQ6c3bu_beFKzXNH4tOQQXezost6F4LHSO19vjT9oRnXPSfecdM9JnzjFzP0xUyPivz-TEBFJ8QuZZmKQ</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Chiasserini, Carla-Fabiana</creator><creator>Garetto, Michele</creator><creator>Leonardi, Emilio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201612</creationdate><title>Social Network De-Anonymization Under Scale-Free User Relations</title><author>Chiasserini, Carla-Fabiana ; Garetto, Michele ; Leonardi, Emilio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-a99cf641c825c14e67ddb463773df17cec748b332ca8fec749ac5a22062127633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Anonymity</topic><topic>Complexity theory</topic><topic>Computer networks</topic><topic>Electronic mail</topic><topic>IEEE transactions</topic><topic>Mathematical model</topic><topic>Nodes</topic><topic>online social networks</topic><topic>Percolation theory</topic><topic>Power law</topic><topic>Privacy</topic><topic>Seeds</topic><topic>Slicing</topic><topic>Social network services</topic><topic>Social networks</topic><topic>user de-anonymization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiasserini, Carla-Fabiana</creatorcontrib><creatorcontrib>Garetto, Michele</creatorcontrib><creatorcontrib>Leonardi, Emilio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ACM transactions on networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chiasserini, Carla-Fabiana</au><au>Garetto, Michele</au><au>Leonardi, Emilio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Social Network De-Anonymization Under Scale-Free User Relations</atitle><jtitle>IEEE/ACM transactions on networking</jtitle><stitle>TNET</stitle><date>2016-12</date><risdate>2016</risdate><volume>24</volume><issue>6</issue><spage>3756</spage><epage>3769</epage><pages>3756-3769</pages><issn>1063-6692</issn><eissn>1558-2566</eissn><coden>IEANEP</coden><abstract>We tackle the problem of user de-anonymization in social networks characterized by scale-free relationships between users. The network is modeled as a graph capturing the impact of power-law node degree distribution, which is a fundamental and quite common feature of social networks. Using this model, we present a de-anonymization algorithm that exploits an initial set of users, called seeds, that are known a priori. By employing the bootstrap percolation theory and a novel graph slicing technique, we develop a rigorous analysis of the proposed algorithm under asymptotic conditions. Our analysis shows that large inhomogeneities in the node degree lead to a dramatic reduction in the size of the seed set that is necessary to successfully identify all the other users. We characterize this set size when seeds are properly selected based on the node degree as well as when seeds are uniformly distributed. We prove that, given n nodes, the number of seeds required for network de-anonymization can be as small as n ∈ , for any small ∈ &gt; 0. In addition, we discuss the complexity of our de-anonymization algorithm and validate our results through numerical experiments on a real social network graph.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNET.2016.2553843</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6692
ispartof IEEE/ACM transactions on networking, 2016-12, Vol.24 (6), p.3756-3769
issn 1063-6692
1558-2566
language eng
recordid cdi_crossref_primary_10_1109_TNET_2016_2553843
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Algorithms
Anonymity
Complexity theory
Computer networks
Electronic mail
IEEE transactions
Mathematical model
Nodes
online social networks
Percolation theory
Power law
Privacy
Seeds
Slicing
Social network services
Social networks
user de-anonymization
title Social Network De-Anonymization Under Scale-Free User Relations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A50%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Social%20Network%20De-Anonymization%20Under%20Scale-Free%20User%20Relations&rft.jtitle=IEEE/ACM%20transactions%20on%20networking&rft.au=Chiasserini,%20Carla-Fabiana&rft.date=2016-12&rft.volume=24&rft.issue=6&rft.spage=3756&rft.epage=3769&rft.pages=3756-3769&rft.issn=1063-6692&rft.eissn=1558-2566&rft.coden=IEANEP&rft_id=info:doi/10.1109/TNET.2016.2553843&rft_dat=%3Cproquest_RIE%3E1850255426%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1850255426&rft_id=info:pmid/&rft_ieee_id=7460134&rfr_iscdi=true