On User Availability Prediction and Network Applications

User connectivity patterns in network applications are known to be heterogeneous and to follow periodic (daily and weekly) patterns. In many cases, the regularity and the correlation of those patterns is problematic: For network applications, many connected users create peaks of demand; in contrast,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on networking 2015-08, Vol.23 (4), p.1300-1313
Hauptverfasser: Dell'Amico, Matteo, Filippone, Maurizio, Michiardi, Pietro, Roudier, Yves
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1313
container_issue 4
container_start_page 1300
container_title IEEE/ACM transactions on networking
container_volume 23
creator Dell'Amico, Matteo
Filippone, Maurizio
Michiardi, Pietro
Roudier, Yves
description User connectivity patterns in network applications are known to be heterogeneous and to follow periodic (daily and weekly) patterns. In many cases, the regularity and the correlation of those patterns is problematic: For network applications, many connected users create peaks of demand; in contrast, in peer-to-peer scenarios, having few users online results in a scarcity of available resources. On the other hand, since connectivity patterns exhibit a periodic behavior, they are to some extent predictable. This paper shows how this can be exploited to anticipate future user connectivity and to have applications proactively responding to it. We evaluate the probability that any given user will be online at any given time, and assess the prediction on 6-month availability traces from three different Internet applications. Building upon this, we show how our probabilistic approach makes it easy to evaluate and optimize the performance in a number of diverse network application models and to use them to optimize systems. In particular, we show how this approach can be used in distributed hash tables, friend-to-friend storage, and cache preloading for social networks, resulting in substantial gains in data availability and system efficiency at negligible costs.
doi_str_mv 10.1109/TNET.2014.2321430
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNET_2014_2321430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6815785</ieee_id><sourcerecordid>10_1109_TNET_2014_2321430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-34a2dca2d9e236fe0e2132ecc924ac16b6883de5b8a01657443e1e2d4fc9a4693</originalsourceid><addsrcrecordid>eNo9j8tqwzAQRUVpoWnaDyjd-AfsavSKtDQhfUBIunDWQpbHoNaNjWRa8ve1SehimOFyz8Ah5BFoAUDNc7XbVAWjIArGGQhOr8gCpNQ5k0pdTzdVPFfKsFtyl9InpcApUwui98fskDBm5Y8LnatDF8ZT9hGxCX4M_TFzxybb4fjbx6-sHIYueDfn6Z7ctK5L-HDZS3J42VTrt3y7f31fl9vcC6HHnAvHGj-NQcZVixQZcIbeGyacB1UrrXmDstaOgpIrITgCska03jihDF8SOP_1sU8pYmuHGL5dPFmgdla3s7qd1e1FfWKezkxAxP--0iBXWvI_JVhU-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On User Availability Prediction and Network Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Dell'Amico, Matteo ; Filippone, Maurizio ; Michiardi, Pietro ; Roudier, Yves</creator><creatorcontrib>Dell'Amico, Matteo ; Filippone, Maurizio ; Michiardi, Pietro ; Roudier, Yves</creatorcontrib><description>User connectivity patterns in network applications are known to be heterogeneous and to follow periodic (daily and weekly) patterns. In many cases, the regularity and the correlation of those patterns is problematic: For network applications, many connected users create peaks of demand; in contrast, in peer-to-peer scenarios, having few users online results in a scarcity of available resources. On the other hand, since connectivity patterns exhibit a periodic behavior, they are to some extent predictable. This paper shows how this can be exploited to anticipate future user connectivity and to have applications proactively responding to it. We evaluate the probability that any given user will be online at any given time, and assess the prediction on 6-month availability traces from three different Internet applications. Building upon this, we show how our probabilistic approach makes it easy to evaluate and optimize the performance in a number of diverse network application models and to use them to optimize systems. In particular, we show how this approach can be used in distributed hash tables, friend-to-friend storage, and cache preloading for social networks, resulting in substantial gains in data availability and system efficiency at negligible costs.</description><identifier>ISSN: 1063-6692</identifier><identifier>EISSN: 1558-2566</identifier><identifier>DOI: 10.1109/TNET.2014.2321430</identifier><identifier>CODEN: IEANEP</identifier><language>eng</language><publisher>IEEE</publisher><subject>Availability ; Instant messaging ; Logic gates ; Logistics ; Peer-to-peer computing ; Predictive models ; Probabilistic logic ; user availability</subject><ispartof>IEEE/ACM transactions on networking, 2015-08, Vol.23 (4), p.1300-1313</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-34a2dca2d9e236fe0e2132ecc924ac16b6883de5b8a01657443e1e2d4fc9a4693</citedby><cites>FETCH-LOGICAL-c448t-34a2dca2d9e236fe0e2132ecc924ac16b6883de5b8a01657443e1e2d4fc9a4693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6815785$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6815785$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dell'Amico, Matteo</creatorcontrib><creatorcontrib>Filippone, Maurizio</creatorcontrib><creatorcontrib>Michiardi, Pietro</creatorcontrib><creatorcontrib>Roudier, Yves</creatorcontrib><title>On User Availability Prediction and Network Applications</title><title>IEEE/ACM transactions on networking</title><addtitle>TNET</addtitle><description>User connectivity patterns in network applications are known to be heterogeneous and to follow periodic (daily and weekly) patterns. In many cases, the regularity and the correlation of those patterns is problematic: For network applications, many connected users create peaks of demand; in contrast, in peer-to-peer scenarios, having few users online results in a scarcity of available resources. On the other hand, since connectivity patterns exhibit a periodic behavior, they are to some extent predictable. This paper shows how this can be exploited to anticipate future user connectivity and to have applications proactively responding to it. We evaluate the probability that any given user will be online at any given time, and assess the prediction on 6-month availability traces from three different Internet applications. Building upon this, we show how our probabilistic approach makes it easy to evaluate and optimize the performance in a number of diverse network application models and to use them to optimize systems. In particular, we show how this approach can be used in distributed hash tables, friend-to-friend storage, and cache preloading for social networks, resulting in substantial gains in data availability and system efficiency at negligible costs.</description><subject>Availability</subject><subject>Instant messaging</subject><subject>Logic gates</subject><subject>Logistics</subject><subject>Peer-to-peer computing</subject><subject>Predictive models</subject><subject>Probabilistic logic</subject><subject>user availability</subject><issn>1063-6692</issn><issn>1558-2566</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9j8tqwzAQRUVpoWnaDyjd-AfsavSKtDQhfUBIunDWQpbHoNaNjWRa8ve1SehimOFyz8Ah5BFoAUDNc7XbVAWjIArGGQhOr8gCpNQ5k0pdTzdVPFfKsFtyl9InpcApUwui98fskDBm5Y8LnatDF8ZT9hGxCX4M_TFzxybb4fjbx6-sHIYueDfn6Z7ctK5L-HDZS3J42VTrt3y7f31fl9vcC6HHnAvHGj-NQcZVixQZcIbeGyacB1UrrXmDstaOgpIrITgCska03jihDF8SOP_1sU8pYmuHGL5dPFmgdla3s7qd1e1FfWKezkxAxP--0iBXWvI_JVhU-A</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Dell'Amico, Matteo</creator><creator>Filippone, Maurizio</creator><creator>Michiardi, Pietro</creator><creator>Roudier, Yves</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150801</creationdate><title>On User Availability Prediction and Network Applications</title><author>Dell'Amico, Matteo ; Filippone, Maurizio ; Michiardi, Pietro ; Roudier, Yves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-34a2dca2d9e236fe0e2132ecc924ac16b6883de5b8a01657443e1e2d4fc9a4693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Availability</topic><topic>Instant messaging</topic><topic>Logic gates</topic><topic>Logistics</topic><topic>Peer-to-peer computing</topic><topic>Predictive models</topic><topic>Probabilistic logic</topic><topic>user availability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dell'Amico, Matteo</creatorcontrib><creatorcontrib>Filippone, Maurizio</creatorcontrib><creatorcontrib>Michiardi, Pietro</creatorcontrib><creatorcontrib>Roudier, Yves</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE/ACM transactions on networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dell'Amico, Matteo</au><au>Filippone, Maurizio</au><au>Michiardi, Pietro</au><au>Roudier, Yves</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On User Availability Prediction and Network Applications</atitle><jtitle>IEEE/ACM transactions on networking</jtitle><stitle>TNET</stitle><date>2015-08-01</date><risdate>2015</risdate><volume>23</volume><issue>4</issue><spage>1300</spage><epage>1313</epage><pages>1300-1313</pages><issn>1063-6692</issn><eissn>1558-2566</eissn><coden>IEANEP</coden><abstract>User connectivity patterns in network applications are known to be heterogeneous and to follow periodic (daily and weekly) patterns. In many cases, the regularity and the correlation of those patterns is problematic: For network applications, many connected users create peaks of demand; in contrast, in peer-to-peer scenarios, having few users online results in a scarcity of available resources. On the other hand, since connectivity patterns exhibit a periodic behavior, they are to some extent predictable. This paper shows how this can be exploited to anticipate future user connectivity and to have applications proactively responding to it. We evaluate the probability that any given user will be online at any given time, and assess the prediction on 6-month availability traces from three different Internet applications. Building upon this, we show how our probabilistic approach makes it easy to evaluate and optimize the performance in a number of diverse network application models and to use them to optimize systems. In particular, we show how this approach can be used in distributed hash tables, friend-to-friend storage, and cache preloading for social networks, resulting in substantial gains in data availability and system efficiency at negligible costs.</abstract><pub>IEEE</pub><doi>10.1109/TNET.2014.2321430</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6692
ispartof IEEE/ACM transactions on networking, 2015-08, Vol.23 (4), p.1300-1313
issn 1063-6692
1558-2566
language eng
recordid cdi_crossref_primary_10_1109_TNET_2014_2321430
source IEEE Electronic Library (IEL)
subjects Availability
Instant messaging
Logic gates
Logistics
Peer-to-peer computing
Predictive models
Probabilistic logic
user availability
title On User Availability Prediction and Network Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T01%3A50%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20User%20Availability%20Prediction%20and%20Network%20Applications&rft.jtitle=IEEE/ACM%20transactions%20on%20networking&rft.au=Dell'Amico,%20Matteo&rft.date=2015-08-01&rft.volume=23&rft.issue=4&rft.spage=1300&rft.epage=1313&rft.pages=1300-1313&rft.issn=1063-6692&rft.eissn=1558-2566&rft.coden=IEANEP&rft_id=info:doi/10.1109/TNET.2014.2321430&rft_dat=%3Ccrossref_RIE%3E10_1109_TNET_2014_2321430%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6815785&rfr_iscdi=true