Graphene Oxide Paper as a Lightweight, Thin, and Controllable Microwave Absorber for Millimeter-Wave Applications

The production and verification of microwave absorbers are a subject of high priority. These are due to the fast development of telecommunication technologies and the need to reduce electromagnetic pollution. Such materials are implementable in multiple industries, including military, medical, and l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nanotechnology 2024, Vol.23, p.329-337
Hauptverfasser: Romanowska, Agata, Marynowicz, Stefan, Strachowski, Tomasz, Godziszewski, Konrad, Yashchyshyn, Yevhen, Racki, Adrian, Baran, Magdalena, Ciuk, Tymoteusz, Chlanda, Adrian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 337
container_issue
container_start_page 329
container_title IEEE transactions on nanotechnology
container_volume 23
creator Romanowska, Agata
Marynowicz, Stefan
Strachowski, Tomasz
Godziszewski, Konrad
Yashchyshyn, Yevhen
Racki, Adrian
Baran, Magdalena
Ciuk, Tymoteusz
Chlanda, Adrian
description The production and verification of microwave absorbers are a subject of high priority. These are due to the fast development of telecommunication technologies and the need to reduce electromagnetic pollution. Such materials are implementable in multiple industries, including military, medical, and laboratory equipment. One should remember that the desired material should exhibit a high total shielding effectiveness SE _{T} and controllable performance properties. In this work, an ultrathin graphene oxide paper is fabricated and verified as a wide-range, controllable microwave absorber. Stepwise (100 ^\circ C - 200 ^\circC - 300 ^\circC) thermally reduced G-Flake graphene oxide paper of 4.95 μm thickness revealed the conductivity of 1.86 S/cm. A mild level of reduction was proven with combustion elemental analysis, resulting in a 22.4 oxygen percentage (50.9 % before the reduction). Raman spectroscopy suggested the limitation of Stone-Wales defects after heat treatment. Microwave absorption was measured in the W-band frequency region, and the SE_{T}/t parameter reached 606 dB/mm for a c.a. 5-μm-thick individual reduced paper sheet. The controlled increase in conductivity resulted in conduction losses, and the occurrence of pores enabled scattering, while the absorption remained the primary shielding mechanism.
doi_str_mv 10.1109/TNANO.2024.3385092
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNANO_2024_3385092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10491295</ieee_id><sourcerecordid>3040056384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-b58c27211dcaaedf2abd3e9610a3ba51c831fc5614b0dbc5030c5521365649413</originalsourceid><addsrcrecordid>eNpNkMlOwzAQhiMEEqXwAoiDJa5N8Zomx6pik0rLoQhulu1MqKs0Tu2U5e1xlwOXmdHM_DP6vyS5JnhICC7uFrPxbD6kmPIhY7nABT1JeqTgJMU4F6exFixLCRUf58lFCCuMySgTeS_ZPHrVLqEBNP-xJaBX1YJHKiCFpvZz2X3DLg7QYmmbAVJNiSau6byra6VrQC_WePetvgCNdXBeR23lfGzXtV1DBz593w_btrZGddY14TI5q1Qd4OqY-8nbw_1i8pRO54_Pk_E0NZSPulSL3NARJaQ0SkFZUaVLBkVGsGJaCWJyRiojMsI1LrURmGEjBCUsExmPxlk_uT3cbb3bbCF0cuW2vokvJcMcY5GxnMctetiKPkLwUMnW27Xyv5JguUMr92jlDq08oo2im4PIAsA_AS8ILQT7A87kdbo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3040056384</pqid></control><display><type>article</type><title>Graphene Oxide Paper as a Lightweight, Thin, and Controllable Microwave Absorber for Millimeter-Wave Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Romanowska, Agata ; Marynowicz, Stefan ; Strachowski, Tomasz ; Godziszewski, Konrad ; Yashchyshyn, Yevhen ; Racki, Adrian ; Baran, Magdalena ; Ciuk, Tymoteusz ; Chlanda, Adrian</creator><creatorcontrib>Romanowska, Agata ; Marynowicz, Stefan ; Strachowski, Tomasz ; Godziszewski, Konrad ; Yashchyshyn, Yevhen ; Racki, Adrian ; Baran, Magdalena ; Ciuk, Tymoteusz ; Chlanda, Adrian</creatorcontrib><description><![CDATA[The production and verification of microwave absorbers are a subject of high priority. These are due to the fast development of telecommunication technologies and the need to reduce electromagnetic pollution. Such materials are implementable in multiple industries, including military, medical, and laboratory equipment. One should remember that the desired material should exhibit a high total shielding effectiveness SE <inline-formula><tex-math notation="LaTeX">_{T}</tex-math></inline-formula> and controllable performance properties. In this work, an ultrathin graphene oxide paper is fabricated and verified as a wide-range, controllable microwave absorber. Stepwise (100 <inline-formula><tex-math notation="LaTeX">^\circ</tex-math></inline-formula> C - 200 <inline-formula><tex-math notation="LaTeX">^\circ</tex-math></inline-formula>C - 300 <inline-formula><tex-math notation="LaTeX">^\circ</tex-math></inline-formula>C) thermally reduced G-Flake graphene oxide paper of 4.95 μm thickness revealed the conductivity of 1.86 S/cm. A mild level of reduction was proven with combustion elemental analysis, resulting in a 22.4 oxygen percentage (50.9 % before the reduction). Raman spectroscopy suggested the limitation of Stone-Wales defects after heat treatment. Microwave absorption was measured in the W-band frequency region, and the SE<inline-formula><tex-math notation="LaTeX">_{T}</tex-math></inline-formula>/t parameter reached 606 dB/mm for a c.a. 5-μm-thick individual reduced paper sheet. The controlled increase in conductivity resulted in conduction losses, and the occurrence of pores enabled scattering, while the absorption remained the primary shielding mechanism.]]></description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2024.3385092</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Absorption ; carbon materials ; Conduction losses ; Controllability ; Controllable absorber ; Electromagnetic heating ; flake graphene ; Flakes (defects) ; flexible microwave absorber ; Graphene ; graphene oxide paper ; Heat treatment ; Medical equipment ; Microwave absorbers ; Microwave absorption ; Microwave imaging ; Microwave measurement ; Microwave photonics ; Microwave theory and techniques ; Millimeter waves ; Raman spectroscopy ; reduced graphene oxide ; Reduction ; Shielding ; shielding effectiveness ; thin film</subject><ispartof>IEEE transactions on nanotechnology, 2024, Vol.23, p.329-337</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-b58c27211dcaaedf2abd3e9610a3ba51c831fc5614b0dbc5030c5521365649413</cites><orcidid>0000-0002-8438-4667 ; 0000-0002-0064-7176 ; 0000-0003-2768-779X ; 0000-0003-1948-3543 ; 0000-0001-9694-5372 ; 0000-0003-4890-8280 ; 0000-0001-8378-1399 ; 0000-0002-8795-7563 ; 0000-0002-9493-0756</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10491295$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,4010,27904,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10491295$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Romanowska, Agata</creatorcontrib><creatorcontrib>Marynowicz, Stefan</creatorcontrib><creatorcontrib>Strachowski, Tomasz</creatorcontrib><creatorcontrib>Godziszewski, Konrad</creatorcontrib><creatorcontrib>Yashchyshyn, Yevhen</creatorcontrib><creatorcontrib>Racki, Adrian</creatorcontrib><creatorcontrib>Baran, Magdalena</creatorcontrib><creatorcontrib>Ciuk, Tymoteusz</creatorcontrib><creatorcontrib>Chlanda, Adrian</creatorcontrib><title>Graphene Oxide Paper as a Lightweight, Thin, and Controllable Microwave Absorber for Millimeter-Wave Applications</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description><![CDATA[The production and verification of microwave absorbers are a subject of high priority. These are due to the fast development of telecommunication technologies and the need to reduce electromagnetic pollution. Such materials are implementable in multiple industries, including military, medical, and laboratory equipment. One should remember that the desired material should exhibit a high total shielding effectiveness SE <inline-formula><tex-math notation="LaTeX">_{T}</tex-math></inline-formula> and controllable performance properties. In this work, an ultrathin graphene oxide paper is fabricated and verified as a wide-range, controllable microwave absorber. Stepwise (100 <inline-formula><tex-math notation="LaTeX">^\circ</tex-math></inline-formula> C - 200 <inline-formula><tex-math notation="LaTeX">^\circ</tex-math></inline-formula>C - 300 <inline-formula><tex-math notation="LaTeX">^\circ</tex-math></inline-formula>C) thermally reduced G-Flake graphene oxide paper of 4.95 μm thickness revealed the conductivity of 1.86 S/cm. A mild level of reduction was proven with combustion elemental analysis, resulting in a 22.4 oxygen percentage (50.9 % before the reduction). Raman spectroscopy suggested the limitation of Stone-Wales defects after heat treatment. Microwave absorption was measured in the W-band frequency region, and the SE<inline-formula><tex-math notation="LaTeX">_{T}</tex-math></inline-formula>/t parameter reached 606 dB/mm for a c.a. 5-μm-thick individual reduced paper sheet. The controlled increase in conductivity resulted in conduction losses, and the occurrence of pores enabled scattering, while the absorption remained the primary shielding mechanism.]]></description><subject>Absorption</subject><subject>carbon materials</subject><subject>Conduction losses</subject><subject>Controllability</subject><subject>Controllable absorber</subject><subject>Electromagnetic heating</subject><subject>flake graphene</subject><subject>Flakes (defects)</subject><subject>flexible microwave absorber</subject><subject>Graphene</subject><subject>graphene oxide paper</subject><subject>Heat treatment</subject><subject>Medical equipment</subject><subject>Microwave absorbers</subject><subject>Microwave absorption</subject><subject>Microwave imaging</subject><subject>Microwave measurement</subject><subject>Microwave photonics</subject><subject>Microwave theory and techniques</subject><subject>Millimeter waves</subject><subject>Raman spectroscopy</subject><subject>reduced graphene oxide</subject><subject>Reduction</subject><subject>Shielding</subject><subject>shielding effectiveness</subject><subject>thin film</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMlOwzAQhiMEEqXwAoiDJa5N8Zomx6pik0rLoQhulu1MqKs0Tu2U5e1xlwOXmdHM_DP6vyS5JnhICC7uFrPxbD6kmPIhY7nABT1JeqTgJMU4F6exFixLCRUf58lFCCuMySgTeS_ZPHrVLqEBNP-xJaBX1YJHKiCFpvZz2X3DLg7QYmmbAVJNiSau6byra6VrQC_WePetvgCNdXBeR23lfGzXtV1DBz593w_btrZGddY14TI5q1Qd4OqY-8nbw_1i8pRO54_Pk_E0NZSPulSL3NARJaQ0SkFZUaVLBkVGsGJaCWJyRiojMsI1LrURmGEjBCUsExmPxlk_uT3cbb3bbCF0cuW2vokvJcMcY5GxnMctetiKPkLwUMnW27Xyv5JguUMr92jlDq08oo2im4PIAsA_AS8ILQT7A87kdbo</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Romanowska, Agata</creator><creator>Marynowicz, Stefan</creator><creator>Strachowski, Tomasz</creator><creator>Godziszewski, Konrad</creator><creator>Yashchyshyn, Yevhen</creator><creator>Racki, Adrian</creator><creator>Baran, Magdalena</creator><creator>Ciuk, Tymoteusz</creator><creator>Chlanda, Adrian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8438-4667</orcidid><orcidid>https://orcid.org/0000-0002-0064-7176</orcidid><orcidid>https://orcid.org/0000-0003-2768-779X</orcidid><orcidid>https://orcid.org/0000-0003-1948-3543</orcidid><orcidid>https://orcid.org/0000-0001-9694-5372</orcidid><orcidid>https://orcid.org/0000-0003-4890-8280</orcidid><orcidid>https://orcid.org/0000-0001-8378-1399</orcidid><orcidid>https://orcid.org/0000-0002-8795-7563</orcidid><orcidid>https://orcid.org/0000-0002-9493-0756</orcidid></search><sort><creationdate>2024</creationdate><title>Graphene Oxide Paper as a Lightweight, Thin, and Controllable Microwave Absorber for Millimeter-Wave Applications</title><author>Romanowska, Agata ; Marynowicz, Stefan ; Strachowski, Tomasz ; Godziszewski, Konrad ; Yashchyshyn, Yevhen ; Racki, Adrian ; Baran, Magdalena ; Ciuk, Tymoteusz ; Chlanda, Adrian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-b58c27211dcaaedf2abd3e9610a3ba51c831fc5614b0dbc5030c5521365649413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorption</topic><topic>carbon materials</topic><topic>Conduction losses</topic><topic>Controllability</topic><topic>Controllable absorber</topic><topic>Electromagnetic heating</topic><topic>flake graphene</topic><topic>Flakes (defects)</topic><topic>flexible microwave absorber</topic><topic>Graphene</topic><topic>graphene oxide paper</topic><topic>Heat treatment</topic><topic>Medical equipment</topic><topic>Microwave absorbers</topic><topic>Microwave absorption</topic><topic>Microwave imaging</topic><topic>Microwave measurement</topic><topic>Microwave photonics</topic><topic>Microwave theory and techniques</topic><topic>Millimeter waves</topic><topic>Raman spectroscopy</topic><topic>reduced graphene oxide</topic><topic>Reduction</topic><topic>Shielding</topic><topic>shielding effectiveness</topic><topic>thin film</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romanowska, Agata</creatorcontrib><creatorcontrib>Marynowicz, Stefan</creatorcontrib><creatorcontrib>Strachowski, Tomasz</creatorcontrib><creatorcontrib>Godziszewski, Konrad</creatorcontrib><creatorcontrib>Yashchyshyn, Yevhen</creatorcontrib><creatorcontrib>Racki, Adrian</creatorcontrib><creatorcontrib>Baran, Magdalena</creatorcontrib><creatorcontrib>Ciuk, Tymoteusz</creatorcontrib><creatorcontrib>Chlanda, Adrian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Romanowska, Agata</au><au>Marynowicz, Stefan</au><au>Strachowski, Tomasz</au><au>Godziszewski, Konrad</au><au>Yashchyshyn, Yevhen</au><au>Racki, Adrian</au><au>Baran, Magdalena</au><au>Ciuk, Tymoteusz</au><au>Chlanda, Adrian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene Oxide Paper as a Lightweight, Thin, and Controllable Microwave Absorber for Millimeter-Wave Applications</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2024</date><risdate>2024</risdate><volume>23</volume><spage>329</spage><epage>337</epage><pages>329-337</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract><![CDATA[The production and verification of microwave absorbers are a subject of high priority. These are due to the fast development of telecommunication technologies and the need to reduce electromagnetic pollution. Such materials are implementable in multiple industries, including military, medical, and laboratory equipment. One should remember that the desired material should exhibit a high total shielding effectiveness SE <inline-formula><tex-math notation="LaTeX">_{T}</tex-math></inline-formula> and controllable performance properties. In this work, an ultrathin graphene oxide paper is fabricated and verified as a wide-range, controllable microwave absorber. Stepwise (100 <inline-formula><tex-math notation="LaTeX">^\circ</tex-math></inline-formula> C - 200 <inline-formula><tex-math notation="LaTeX">^\circ</tex-math></inline-formula>C - 300 <inline-formula><tex-math notation="LaTeX">^\circ</tex-math></inline-formula>C) thermally reduced G-Flake graphene oxide paper of 4.95 μm thickness revealed the conductivity of 1.86 S/cm. A mild level of reduction was proven with combustion elemental analysis, resulting in a 22.4 oxygen percentage (50.9 % before the reduction). Raman spectroscopy suggested the limitation of Stone-Wales defects after heat treatment. Microwave absorption was measured in the W-band frequency region, and the SE<inline-formula><tex-math notation="LaTeX">_{T}</tex-math></inline-formula>/t parameter reached 606 dB/mm for a c.a. 5-μm-thick individual reduced paper sheet. The controlled increase in conductivity resulted in conduction losses, and the occurrence of pores enabled scattering, while the absorption remained the primary shielding mechanism.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNANO.2024.3385092</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8438-4667</orcidid><orcidid>https://orcid.org/0000-0002-0064-7176</orcidid><orcidid>https://orcid.org/0000-0003-2768-779X</orcidid><orcidid>https://orcid.org/0000-0003-1948-3543</orcidid><orcidid>https://orcid.org/0000-0001-9694-5372</orcidid><orcidid>https://orcid.org/0000-0003-4890-8280</orcidid><orcidid>https://orcid.org/0000-0001-8378-1399</orcidid><orcidid>https://orcid.org/0000-0002-8795-7563</orcidid><orcidid>https://orcid.org/0000-0002-9493-0756</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-125X
ispartof IEEE transactions on nanotechnology, 2024, Vol.23, p.329-337
issn 1536-125X
1941-0085
language eng
recordid cdi_crossref_primary_10_1109_TNANO_2024_3385092
source IEEE Electronic Library (IEL)
subjects Absorption
carbon materials
Conduction losses
Controllability
Controllable absorber
Electromagnetic heating
flake graphene
Flakes (defects)
flexible microwave absorber
Graphene
graphene oxide paper
Heat treatment
Medical equipment
Microwave absorbers
Microwave absorption
Microwave imaging
Microwave measurement
Microwave photonics
Microwave theory and techniques
Millimeter waves
Raman spectroscopy
reduced graphene oxide
Reduction
Shielding
shielding effectiveness
thin film
title Graphene Oxide Paper as a Lightweight, Thin, and Controllable Microwave Absorber for Millimeter-Wave Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A28%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene%20Oxide%20Paper%20as%20a%20Lightweight,%20Thin,%20and%20Controllable%20Microwave%20Absorber%20for%20Millimeter-Wave%20Applications&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Romanowska,%20Agata&rft.date=2024&rft.volume=23&rft.spage=329&rft.epage=337&rft.pages=329-337&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2024.3385092&rft_dat=%3Cproquest_RIE%3E3040056384%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3040056384&rft_id=info:pmid/&rft_ieee_id=10491295&rfr_iscdi=true