Graphene Oxide Paper as a Lightweight, Thin, and Controllable Microwave Absorber for Millimeter-Wave Applications
The production and verification of microwave absorbers are a subject of high priority. These are due to the fast development of telecommunication technologies and the need to reduce electromagnetic pollution. Such materials are implementable in multiple industries, including military, medical, and l...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nanotechnology 2024, Vol.23, p.329-337 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 337 |
---|---|
container_issue | |
container_start_page | 329 |
container_title | IEEE transactions on nanotechnology |
container_volume | 23 |
creator | Romanowska, Agata Marynowicz, Stefan Strachowski, Tomasz Godziszewski, Konrad Yashchyshyn, Yevhen Racki, Adrian Baran, Magdalena Ciuk, Tymoteusz Chlanda, Adrian |
description | The production and verification of microwave absorbers are a subject of high priority. These are due to the fast development of telecommunication technologies and the need to reduce electromagnetic pollution. Such materials are implementable in multiple industries, including military, medical, and laboratory equipment. One should remember that the desired material should exhibit a high total shielding effectiveness SE _{T} and controllable performance properties. In this work, an ultrathin graphene oxide paper is fabricated and verified as a wide-range, controllable microwave absorber. Stepwise (100 ^\circ C - 200 ^\circC - 300 ^\circC) thermally reduced G-Flake graphene oxide paper of 4.95 μm thickness revealed the conductivity of 1.86 S/cm. A mild level of reduction was proven with combustion elemental analysis, resulting in a 22.4 oxygen percentage (50.9 % before the reduction). Raman spectroscopy suggested the limitation of Stone-Wales defects after heat treatment. Microwave absorption was measured in the W-band frequency region, and the SE_{T}/t parameter reached 606 dB/mm for a c.a. 5-μm-thick individual reduced paper sheet. The controlled increase in conductivity resulted in conduction losses, and the occurrence of pores enabled scattering, while the absorption remained the primary shielding mechanism. |
doi_str_mv | 10.1109/TNANO.2024.3385092 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNANO_2024_3385092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10491295</ieee_id><sourcerecordid>3040056384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-b58c27211dcaaedf2abd3e9610a3ba51c831fc5614b0dbc5030c5521365649413</originalsourceid><addsrcrecordid>eNpNkMlOwzAQhiMEEqXwAoiDJa5N8Zomx6pik0rLoQhulu1MqKs0Tu2U5e1xlwOXmdHM_DP6vyS5JnhICC7uFrPxbD6kmPIhY7nABT1JeqTgJMU4F6exFixLCRUf58lFCCuMySgTeS_ZPHrVLqEBNP-xJaBX1YJHKiCFpvZz2X3DLg7QYmmbAVJNiSau6byra6VrQC_WePetvgCNdXBeR23lfGzXtV1DBz593w_btrZGddY14TI5q1Qd4OqY-8nbw_1i8pRO54_Pk_E0NZSPulSL3NARJaQ0SkFZUaVLBkVGsGJaCWJyRiojMsI1LrURmGEjBCUsExmPxlk_uT3cbb3bbCF0cuW2vokvJcMcY5GxnMctetiKPkLwUMnW27Xyv5JguUMr92jlDq08oo2im4PIAsA_AS8ILQT7A87kdbo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3040056384</pqid></control><display><type>article</type><title>Graphene Oxide Paper as a Lightweight, Thin, and Controllable Microwave Absorber for Millimeter-Wave Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Romanowska, Agata ; Marynowicz, Stefan ; Strachowski, Tomasz ; Godziszewski, Konrad ; Yashchyshyn, Yevhen ; Racki, Adrian ; Baran, Magdalena ; Ciuk, Tymoteusz ; Chlanda, Adrian</creator><creatorcontrib>Romanowska, Agata ; Marynowicz, Stefan ; Strachowski, Tomasz ; Godziszewski, Konrad ; Yashchyshyn, Yevhen ; Racki, Adrian ; Baran, Magdalena ; Ciuk, Tymoteusz ; Chlanda, Adrian</creatorcontrib><description><![CDATA[The production and verification of microwave absorbers are a subject of high priority. These are due to the fast development of telecommunication technologies and the need to reduce electromagnetic pollution. Such materials are implementable in multiple industries, including military, medical, and laboratory equipment. One should remember that the desired material should exhibit a high total shielding effectiveness SE <inline-formula><tex-math notation="LaTeX">_{T}</tex-math></inline-formula> and controllable performance properties. In this work, an ultrathin graphene oxide paper is fabricated and verified as a wide-range, controllable microwave absorber. Stepwise (100 <inline-formula><tex-math notation="LaTeX">^\circ</tex-math></inline-formula> C - 200 <inline-formula><tex-math notation="LaTeX">^\circ</tex-math></inline-formula>C - 300 <inline-formula><tex-math notation="LaTeX">^\circ</tex-math></inline-formula>C) thermally reduced G-Flake graphene oxide paper of 4.95 μm thickness revealed the conductivity of 1.86 S/cm. A mild level of reduction was proven with combustion elemental analysis, resulting in a 22.4 oxygen percentage (50.9 % before the reduction). Raman spectroscopy suggested the limitation of Stone-Wales defects after heat treatment. Microwave absorption was measured in the W-band frequency region, and the SE<inline-formula><tex-math notation="LaTeX">_{T}</tex-math></inline-formula>/t parameter reached 606 dB/mm for a c.a. 5-μm-thick individual reduced paper sheet. The controlled increase in conductivity resulted in conduction losses, and the occurrence of pores enabled scattering, while the absorption remained the primary shielding mechanism.]]></description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2024.3385092</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Absorption ; carbon materials ; Conduction losses ; Controllability ; Controllable absorber ; Electromagnetic heating ; flake graphene ; Flakes (defects) ; flexible microwave absorber ; Graphene ; graphene oxide paper ; Heat treatment ; Medical equipment ; Microwave absorbers ; Microwave absorption ; Microwave imaging ; Microwave measurement ; Microwave photonics ; Microwave theory and techniques ; Millimeter waves ; Raman spectroscopy ; reduced graphene oxide ; Reduction ; Shielding ; shielding effectiveness ; thin film</subject><ispartof>IEEE transactions on nanotechnology, 2024, Vol.23, p.329-337</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-b58c27211dcaaedf2abd3e9610a3ba51c831fc5614b0dbc5030c5521365649413</cites><orcidid>0000-0002-8438-4667 ; 0000-0002-0064-7176 ; 0000-0003-2768-779X ; 0000-0003-1948-3543 ; 0000-0001-9694-5372 ; 0000-0003-4890-8280 ; 0000-0001-8378-1399 ; 0000-0002-8795-7563 ; 0000-0002-9493-0756</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10491295$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,4010,27904,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10491295$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Romanowska, Agata</creatorcontrib><creatorcontrib>Marynowicz, Stefan</creatorcontrib><creatorcontrib>Strachowski, Tomasz</creatorcontrib><creatorcontrib>Godziszewski, Konrad</creatorcontrib><creatorcontrib>Yashchyshyn, Yevhen</creatorcontrib><creatorcontrib>Racki, Adrian</creatorcontrib><creatorcontrib>Baran, Magdalena</creatorcontrib><creatorcontrib>Ciuk, Tymoteusz</creatorcontrib><creatorcontrib>Chlanda, Adrian</creatorcontrib><title>Graphene Oxide Paper as a Lightweight, Thin, and Controllable Microwave Absorber for Millimeter-Wave Applications</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description><![CDATA[The production and verification of microwave absorbers are a subject of high priority. These are due to the fast development of telecommunication technologies and the need to reduce electromagnetic pollution. Such materials are implementable in multiple industries, including military, medical, and laboratory equipment. One should remember that the desired material should exhibit a high total shielding effectiveness SE <inline-formula><tex-math notation="LaTeX">_{T}</tex-math></inline-formula> and controllable performance properties. In this work, an ultrathin graphene oxide paper is fabricated and verified as a wide-range, controllable microwave absorber. Stepwise (100 <inline-formula><tex-math notation="LaTeX">^\circ</tex-math></inline-formula> C - 200 <inline-formula><tex-math notation="LaTeX">^\circ</tex-math></inline-formula>C - 300 <inline-formula><tex-math notation="LaTeX">^\circ</tex-math></inline-formula>C) thermally reduced G-Flake graphene oxide paper of 4.95 μm thickness revealed the conductivity of 1.86 S/cm. A mild level of reduction was proven with combustion elemental analysis, resulting in a 22.4 oxygen percentage (50.9 % before the reduction). Raman spectroscopy suggested the limitation of Stone-Wales defects after heat treatment. Microwave absorption was measured in the W-band frequency region, and the SE<inline-formula><tex-math notation="LaTeX">_{T}</tex-math></inline-formula>/t parameter reached 606 dB/mm for a c.a. 5-μm-thick individual reduced paper sheet. The controlled increase in conductivity resulted in conduction losses, and the occurrence of pores enabled scattering, while the absorption remained the primary shielding mechanism.]]></description><subject>Absorption</subject><subject>carbon materials</subject><subject>Conduction losses</subject><subject>Controllability</subject><subject>Controllable absorber</subject><subject>Electromagnetic heating</subject><subject>flake graphene</subject><subject>Flakes (defects)</subject><subject>flexible microwave absorber</subject><subject>Graphene</subject><subject>graphene oxide paper</subject><subject>Heat treatment</subject><subject>Medical equipment</subject><subject>Microwave absorbers</subject><subject>Microwave absorption</subject><subject>Microwave imaging</subject><subject>Microwave measurement</subject><subject>Microwave photonics</subject><subject>Microwave theory and techniques</subject><subject>Millimeter waves</subject><subject>Raman spectroscopy</subject><subject>reduced graphene oxide</subject><subject>Reduction</subject><subject>Shielding</subject><subject>shielding effectiveness</subject><subject>thin film</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMlOwzAQhiMEEqXwAoiDJa5N8Zomx6pik0rLoQhulu1MqKs0Tu2U5e1xlwOXmdHM_DP6vyS5JnhICC7uFrPxbD6kmPIhY7nABT1JeqTgJMU4F6exFixLCRUf58lFCCuMySgTeS_ZPHrVLqEBNP-xJaBX1YJHKiCFpvZz2X3DLg7QYmmbAVJNiSau6byra6VrQC_WePetvgCNdXBeR23lfGzXtV1DBz593w_btrZGddY14TI5q1Qd4OqY-8nbw_1i8pRO54_Pk_E0NZSPulSL3NARJaQ0SkFZUaVLBkVGsGJaCWJyRiojMsI1LrURmGEjBCUsExmPxlk_uT3cbb3bbCF0cuW2vokvJcMcY5GxnMctetiKPkLwUMnW27Xyv5JguUMr92jlDq08oo2im4PIAsA_AS8ILQT7A87kdbo</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Romanowska, Agata</creator><creator>Marynowicz, Stefan</creator><creator>Strachowski, Tomasz</creator><creator>Godziszewski, Konrad</creator><creator>Yashchyshyn, Yevhen</creator><creator>Racki, Adrian</creator><creator>Baran, Magdalena</creator><creator>Ciuk, Tymoteusz</creator><creator>Chlanda, Adrian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8438-4667</orcidid><orcidid>https://orcid.org/0000-0002-0064-7176</orcidid><orcidid>https://orcid.org/0000-0003-2768-779X</orcidid><orcidid>https://orcid.org/0000-0003-1948-3543</orcidid><orcidid>https://orcid.org/0000-0001-9694-5372</orcidid><orcidid>https://orcid.org/0000-0003-4890-8280</orcidid><orcidid>https://orcid.org/0000-0001-8378-1399</orcidid><orcidid>https://orcid.org/0000-0002-8795-7563</orcidid><orcidid>https://orcid.org/0000-0002-9493-0756</orcidid></search><sort><creationdate>2024</creationdate><title>Graphene Oxide Paper as a Lightweight, Thin, and Controllable Microwave Absorber for Millimeter-Wave Applications</title><author>Romanowska, Agata ; Marynowicz, Stefan ; Strachowski, Tomasz ; Godziszewski, Konrad ; Yashchyshyn, Yevhen ; Racki, Adrian ; Baran, Magdalena ; Ciuk, Tymoteusz ; Chlanda, Adrian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-b58c27211dcaaedf2abd3e9610a3ba51c831fc5614b0dbc5030c5521365649413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorption</topic><topic>carbon materials</topic><topic>Conduction losses</topic><topic>Controllability</topic><topic>Controllable absorber</topic><topic>Electromagnetic heating</topic><topic>flake graphene</topic><topic>Flakes (defects)</topic><topic>flexible microwave absorber</topic><topic>Graphene</topic><topic>graphene oxide paper</topic><topic>Heat treatment</topic><topic>Medical equipment</topic><topic>Microwave absorbers</topic><topic>Microwave absorption</topic><topic>Microwave imaging</topic><topic>Microwave measurement</topic><topic>Microwave photonics</topic><topic>Microwave theory and techniques</topic><topic>Millimeter waves</topic><topic>Raman spectroscopy</topic><topic>reduced graphene oxide</topic><topic>Reduction</topic><topic>Shielding</topic><topic>shielding effectiveness</topic><topic>thin film</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romanowska, Agata</creatorcontrib><creatorcontrib>Marynowicz, Stefan</creatorcontrib><creatorcontrib>Strachowski, Tomasz</creatorcontrib><creatorcontrib>Godziszewski, Konrad</creatorcontrib><creatorcontrib>Yashchyshyn, Yevhen</creatorcontrib><creatorcontrib>Racki, Adrian</creatorcontrib><creatorcontrib>Baran, Magdalena</creatorcontrib><creatorcontrib>Ciuk, Tymoteusz</creatorcontrib><creatorcontrib>Chlanda, Adrian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Romanowska, Agata</au><au>Marynowicz, Stefan</au><au>Strachowski, Tomasz</au><au>Godziszewski, Konrad</au><au>Yashchyshyn, Yevhen</au><au>Racki, Adrian</au><au>Baran, Magdalena</au><au>Ciuk, Tymoteusz</au><au>Chlanda, Adrian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene Oxide Paper as a Lightweight, Thin, and Controllable Microwave Absorber for Millimeter-Wave Applications</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2024</date><risdate>2024</risdate><volume>23</volume><spage>329</spage><epage>337</epage><pages>329-337</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract><![CDATA[The production and verification of microwave absorbers are a subject of high priority. These are due to the fast development of telecommunication technologies and the need to reduce electromagnetic pollution. Such materials are implementable in multiple industries, including military, medical, and laboratory equipment. One should remember that the desired material should exhibit a high total shielding effectiveness SE <inline-formula><tex-math notation="LaTeX">_{T}</tex-math></inline-formula> and controllable performance properties. In this work, an ultrathin graphene oxide paper is fabricated and verified as a wide-range, controllable microwave absorber. Stepwise (100 <inline-formula><tex-math notation="LaTeX">^\circ</tex-math></inline-formula> C - 200 <inline-formula><tex-math notation="LaTeX">^\circ</tex-math></inline-formula>C - 300 <inline-formula><tex-math notation="LaTeX">^\circ</tex-math></inline-formula>C) thermally reduced G-Flake graphene oxide paper of 4.95 μm thickness revealed the conductivity of 1.86 S/cm. A mild level of reduction was proven with combustion elemental analysis, resulting in a 22.4 oxygen percentage (50.9 % before the reduction). Raman spectroscopy suggested the limitation of Stone-Wales defects after heat treatment. Microwave absorption was measured in the W-band frequency region, and the SE<inline-formula><tex-math notation="LaTeX">_{T}</tex-math></inline-formula>/t parameter reached 606 dB/mm for a c.a. 5-μm-thick individual reduced paper sheet. The controlled increase in conductivity resulted in conduction losses, and the occurrence of pores enabled scattering, while the absorption remained the primary shielding mechanism.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNANO.2024.3385092</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8438-4667</orcidid><orcidid>https://orcid.org/0000-0002-0064-7176</orcidid><orcidid>https://orcid.org/0000-0003-2768-779X</orcidid><orcidid>https://orcid.org/0000-0003-1948-3543</orcidid><orcidid>https://orcid.org/0000-0001-9694-5372</orcidid><orcidid>https://orcid.org/0000-0003-4890-8280</orcidid><orcidid>https://orcid.org/0000-0001-8378-1399</orcidid><orcidid>https://orcid.org/0000-0002-8795-7563</orcidid><orcidid>https://orcid.org/0000-0002-9493-0756</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-125X |
ispartof | IEEE transactions on nanotechnology, 2024, Vol.23, p.329-337 |
issn | 1536-125X 1941-0085 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TNANO_2024_3385092 |
source | IEEE Electronic Library (IEL) |
subjects | Absorption carbon materials Conduction losses Controllability Controllable absorber Electromagnetic heating flake graphene Flakes (defects) flexible microwave absorber Graphene graphene oxide paper Heat treatment Medical equipment Microwave absorbers Microwave absorption Microwave imaging Microwave measurement Microwave photonics Microwave theory and techniques Millimeter waves Raman spectroscopy reduced graphene oxide Reduction Shielding shielding effectiveness thin film |
title | Graphene Oxide Paper as a Lightweight, Thin, and Controllable Microwave Absorber for Millimeter-Wave Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A28%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene%20Oxide%20Paper%20as%20a%20Lightweight,%20Thin,%20and%20Controllable%20Microwave%20Absorber%20for%20Millimeter-Wave%20Applications&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Romanowska,%20Agata&rft.date=2024&rft.volume=23&rft.spage=329&rft.epage=337&rft.pages=329-337&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2024.3385092&rft_dat=%3Cproquest_RIE%3E3040056384%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3040056384&rft_id=info:pmid/&rft_ieee_id=10491295&rfr_iscdi=true |