Study on Inter Band and Inter Sub-Band Optical Transitions With Varying InAs/InGaAs Sub-Monolayer Quantum Dot Heterostructure Stacks Grown by Molecular Beam Epitaxy

Multiple stacking of sub-monolayer (SML) quantum dot (QD) heterostructure exhibits high optical quality and is seen in devices like lasers diodes, photodetectors, etc. In this study, we have investigated the optical and material characterization of InAs/InGaAs SML quantum dot (QD) heterostructure wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nanotechnology 2020, Vol.19, p.601-608
Hauptverfasser: Shriram, Saranya Reddy, Kumar, Ravindra, Panda, Debiprasad, Saha, Jhuma, Tongbram, Binita, Mantri, Manas Ranjan, Gazi, Sanowar Alam, Mandal, Arjun, Chakrabarti, Subhananda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 608
container_issue
container_start_page 601
container_title IEEE transactions on nanotechnology
container_volume 19
creator Shriram, Saranya Reddy
Kumar, Ravindra
Panda, Debiprasad
Saha, Jhuma
Tongbram, Binita
Mantri, Manas Ranjan
Gazi, Sanowar Alam
Mandal, Arjun
Chakrabarti, Subhananda
description Multiple stacking of sub-monolayer (SML) quantum dot (QD) heterostructure exhibits high optical quality and is seen in devices like lasers diodes, photodetectors, etc. In this study, we have investigated the optical and material characterization of InAs/InGaAs SML quantum dot (QD) heterostructure with multiple stacking layers (nSML) on GaAs substrates. The experimentally calculated PL emission energies were found to be 1.19, 1.13, 1.11 and 1.12 eV for 4, 6, 8 and 10 QD stacks at 19 K, excitation power of 1.1 kW/cm 2 (25 mW) respectively. A feature of increased strain with increasing nSML was verified experimentally by high-resolution X-ray diffraction (HRXRD) and Raman measurements as well. The experimental PL peak energy data were then validated with nextnano++ simulations based on Schrödinger - Poisson device solver. The hydrostatic and biaxial strain components were computed to correlate the experimental and simulation data. Hence with these enunciated understandings, we conclude that an ideal choice on the number of SML stacks that can be grown on a GaAs substrate was found to be 6 stacks, helpful to realize and fabricate QD based infrared photodetectors (QDIPs) devices in long wavelength regime.
doi_str_mv 10.1109/TNANO.2020.3009597
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNANO_2020_3009597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9143511</ieee_id><sourcerecordid>2429902507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-f96d5deee5c0da32415ce520b77e1fc607db3fd88d39a504b6777b5130f751883</originalsourceid><addsrcrecordid>eNqNkd9u0zAUxiMEEmPwAuPGEpco3bEdx_Fl6UZXaVuF2m3cRY7jQEZqF__RyPvwoLjNtGsuLB9b3-879vmy7AzDDGMQ59vb-e16RoDAjAIIJvir7ASLAucAFXudakbLHBP2_W32zvtHAMxLVp1kfzchtiOyBq1M0A59kaZFhzUdN7HJj1frfeiVHNDWSeP70Fvj0UMffqJ76cbe_Ej6uT9fmaWc-yN1Y40d5Jg8vkVpQtyhCxvQlU6u1gcXVYhOo02Q6pdHS2efDGpGdGMHreIg00O03KHLfR_kn_F99qaTg9cfnvfT7O7r5XZxlV-vl6vF_DpXRLCQd6JsWau1ZgpaSUmBmdKMQMO5xp0qgbcN7dqqaqmQDIqm5Jw3DFPoOMNVRU-zT5Pv3tnfUftQP9roTGpZk4IIAYQBTyoyqVT6iXe6q_eu36Ux1BjqQxr1MY36kEb9nEaCPk_Qk25s51WvjdIvIAAwVlQVIakCktTV_6sXaUaHQBY2mpDQjxPap0G8IAIXlGFM_wHMAaim</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429902507</pqid></control><display><type>article</type><title>Study on Inter Band and Inter Sub-Band Optical Transitions With Varying InAs/InGaAs Sub-Monolayer Quantum Dot Heterostructure Stacks Grown by Molecular Beam Epitaxy</title><source>IEEE Electronic Library (IEL)</source><creator>Shriram, Saranya Reddy ; Kumar, Ravindra ; Panda, Debiprasad ; Saha, Jhuma ; Tongbram, Binita ; Mantri, Manas Ranjan ; Gazi, Sanowar Alam ; Mandal, Arjun ; Chakrabarti, Subhananda</creator><creatorcontrib>Shriram, Saranya Reddy ; Kumar, Ravindra ; Panda, Debiprasad ; Saha, Jhuma ; Tongbram, Binita ; Mantri, Manas Ranjan ; Gazi, Sanowar Alam ; Mandal, Arjun ; Chakrabarti, Subhananda</creatorcontrib><description>Multiple stacking of sub-monolayer (SML) quantum dot (QD) heterostructure exhibits high optical quality and is seen in devices like lasers diodes, photodetectors, etc. In this study, we have investigated the optical and material characterization of InAs/InGaAs SML quantum dot (QD) heterostructure with multiple stacking layers (nSML) on GaAs substrates. The experimentally calculated PL emission energies were found to be 1.19, 1.13, 1.11 and 1.12 eV for 4, 6, 8 and 10 QD stacks at 19 K, excitation power of 1.1 kW/cm 2 (25 mW) respectively. A feature of increased strain with increasing nSML was verified experimentally by high-resolution X-ray diffraction (HRXRD) and Raman measurements as well. The experimental PL peak energy data were then validated with nextnano++ simulations based on Schrödinger - Poisson device solver. The hydrostatic and biaxial strain components were computed to correlate the experimental and simulation data. Hence with these enunciated understandings, we conclude that an ideal choice on the number of SML stacks that can be grown on a GaAs substrate was found to be 6 stacks, helpful to realize and fabricate QD based infrared photodetectors (QDIPs) devices in long wavelength regime.</description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2020.3009597</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Computer simulation ; Engineering ; Engineering, Electrical &amp; Electronic ; Epitaxial growth ; Gallium arsenide ; Heterostructures ; Indium arsenides ; Indium gallium arsenides ; infrared photodetectors ; Materials Science ; Materials Science, Multidisciplinary ; Molecular beam epitaxy ; Monolayers ; Nanoscience &amp; Nanotechnology ; Photodetectors ; Photoluminescence ; Photometers ; Physical Sciences ; Physics ; Physics, Applied ; Quantum dots ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Stacking ; Stacks ; Strain ; sub-monolayer growth ; Substrates ; Technology ; Temperature measurement</subject><ispartof>IEEE transactions on nanotechnology, 2020, Vol.19, p.601-608</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>7</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000554882200002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c295t-f96d5deee5c0da32415ce520b77e1fc607db3fd88d39a504b6777b5130f751883</citedby><cites>FETCH-LOGICAL-c295t-f96d5deee5c0da32415ce520b77e1fc607db3fd88d39a504b6777b5130f751883</cites><orcidid>0000-0001-5336-4068 ; 0000-0001-8384-7706 ; 0000-0002-8459-0890</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9143511$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,4025,27928,27929,27930,28253,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9143511$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shriram, Saranya Reddy</creatorcontrib><creatorcontrib>Kumar, Ravindra</creatorcontrib><creatorcontrib>Panda, Debiprasad</creatorcontrib><creatorcontrib>Saha, Jhuma</creatorcontrib><creatorcontrib>Tongbram, Binita</creatorcontrib><creatorcontrib>Mantri, Manas Ranjan</creatorcontrib><creatorcontrib>Gazi, Sanowar Alam</creatorcontrib><creatorcontrib>Mandal, Arjun</creatorcontrib><creatorcontrib>Chakrabarti, Subhananda</creatorcontrib><title>Study on Inter Band and Inter Sub-Band Optical Transitions With Varying InAs/InGaAs Sub-Monolayer Quantum Dot Heterostructure Stacks Grown by Molecular Beam Epitaxy</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><addtitle>IEEE T NANOTECHNOL</addtitle><description>Multiple stacking of sub-monolayer (SML) quantum dot (QD) heterostructure exhibits high optical quality and is seen in devices like lasers diodes, photodetectors, etc. In this study, we have investigated the optical and material characterization of InAs/InGaAs SML quantum dot (QD) heterostructure with multiple stacking layers (nSML) on GaAs substrates. The experimentally calculated PL emission energies were found to be 1.19, 1.13, 1.11 and 1.12 eV for 4, 6, 8 and 10 QD stacks at 19 K, excitation power of 1.1 kW/cm 2 (25 mW) respectively. A feature of increased strain with increasing nSML was verified experimentally by high-resolution X-ray diffraction (HRXRD) and Raman measurements as well. The experimental PL peak energy data were then validated with nextnano++ simulations based on Schrödinger - Poisson device solver. The hydrostatic and biaxial strain components were computed to correlate the experimental and simulation data. Hence with these enunciated understandings, we conclude that an ideal choice on the number of SML stacks that can be grown on a GaAs substrate was found to be 6 stacks, helpful to realize and fabricate QD based infrared photodetectors (QDIPs) devices in long wavelength regime.</description><subject>Computer simulation</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>Epitaxial growth</subject><subject>Gallium arsenide</subject><subject>Heterostructures</subject><subject>Indium arsenides</subject><subject>Indium gallium arsenides</subject><subject>infrared photodetectors</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Molecular beam epitaxy</subject><subject>Monolayers</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>Photodetectors</subject><subject>Photoluminescence</subject><subject>Photometers</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Quantum dots</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Stacking</subject><subject>Stacks</subject><subject>Strain</subject><subject>sub-monolayer growth</subject><subject>Substrates</subject><subject>Technology</subject><subject>Temperature measurement</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><recordid>eNqNkd9u0zAUxiMEEmPwAuPGEpco3bEdx_Fl6UZXaVuF2m3cRY7jQEZqF__RyPvwoLjNtGsuLB9b3-879vmy7AzDDGMQ59vb-e16RoDAjAIIJvir7ASLAucAFXudakbLHBP2_W32zvtHAMxLVp1kfzchtiOyBq1M0A59kaZFhzUdN7HJj1frfeiVHNDWSeP70Fvj0UMffqJ76cbe_Ej6uT9fmaWc-yN1Y40d5Jg8vkVpQtyhCxvQlU6u1gcXVYhOo02Q6pdHS2efDGpGdGMHreIg00O03KHLfR_kn_F99qaTg9cfnvfT7O7r5XZxlV-vl6vF_DpXRLCQd6JsWau1ZgpaSUmBmdKMQMO5xp0qgbcN7dqqaqmQDIqm5Jw3DFPoOMNVRU-zT5Pv3tnfUftQP9roTGpZk4IIAYQBTyoyqVT6iXe6q_eu36Ux1BjqQxr1MY36kEb9nEaCPk_Qk25s51WvjdIvIAAwVlQVIakCktTV_6sXaUaHQBY2mpDQjxPap0G8IAIXlGFM_wHMAaim</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Shriram, Saranya Reddy</creator><creator>Kumar, Ravindra</creator><creator>Panda, Debiprasad</creator><creator>Saha, Jhuma</creator><creator>Tongbram, Binita</creator><creator>Mantri, Manas Ranjan</creator><creator>Gazi, Sanowar Alam</creator><creator>Mandal, Arjun</creator><creator>Chakrabarti, Subhananda</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5336-4068</orcidid><orcidid>https://orcid.org/0000-0001-8384-7706</orcidid><orcidid>https://orcid.org/0000-0002-8459-0890</orcidid></search><sort><creationdate>2020</creationdate><title>Study on Inter Band and Inter Sub-Band Optical Transitions With Varying InAs/InGaAs Sub-Monolayer Quantum Dot Heterostructure Stacks Grown by Molecular Beam Epitaxy</title><author>Shriram, Saranya Reddy ; Kumar, Ravindra ; Panda, Debiprasad ; Saha, Jhuma ; Tongbram, Binita ; Mantri, Manas Ranjan ; Gazi, Sanowar Alam ; Mandal, Arjun ; Chakrabarti, Subhananda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-f96d5deee5c0da32415ce520b77e1fc607db3fd88d39a504b6777b5130f751883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer simulation</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>Epitaxial growth</topic><topic>Gallium arsenide</topic><topic>Heterostructures</topic><topic>Indium arsenides</topic><topic>Indium gallium arsenides</topic><topic>infrared photodetectors</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Molecular beam epitaxy</topic><topic>Monolayers</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>Photodetectors</topic><topic>Photoluminescence</topic><topic>Photometers</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Quantum dots</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Stacking</topic><topic>Stacks</topic><topic>Strain</topic><topic>sub-monolayer growth</topic><topic>Substrates</topic><topic>Technology</topic><topic>Temperature measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shriram, Saranya Reddy</creatorcontrib><creatorcontrib>Kumar, Ravindra</creatorcontrib><creatorcontrib>Panda, Debiprasad</creatorcontrib><creatorcontrib>Saha, Jhuma</creatorcontrib><creatorcontrib>Tongbram, Binita</creatorcontrib><creatorcontrib>Mantri, Manas Ranjan</creatorcontrib><creatorcontrib>Gazi, Sanowar Alam</creatorcontrib><creatorcontrib>Mandal, Arjun</creatorcontrib><creatorcontrib>Chakrabarti, Subhananda</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shriram, Saranya Reddy</au><au>Kumar, Ravindra</au><au>Panda, Debiprasad</au><au>Saha, Jhuma</au><au>Tongbram, Binita</au><au>Mantri, Manas Ranjan</au><au>Gazi, Sanowar Alam</au><au>Mandal, Arjun</au><au>Chakrabarti, Subhananda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on Inter Band and Inter Sub-Band Optical Transitions With Varying InAs/InGaAs Sub-Monolayer Quantum Dot Heterostructure Stacks Grown by Molecular Beam Epitaxy</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><stitle>IEEE T NANOTECHNOL</stitle><date>2020</date><risdate>2020</risdate><volume>19</volume><spage>601</spage><epage>608</epage><pages>601-608</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract>Multiple stacking of sub-monolayer (SML) quantum dot (QD) heterostructure exhibits high optical quality and is seen in devices like lasers diodes, photodetectors, etc. In this study, we have investigated the optical and material characterization of InAs/InGaAs SML quantum dot (QD) heterostructure with multiple stacking layers (nSML) on GaAs substrates. The experimentally calculated PL emission energies were found to be 1.19, 1.13, 1.11 and 1.12 eV for 4, 6, 8 and 10 QD stacks at 19 K, excitation power of 1.1 kW/cm 2 (25 mW) respectively. A feature of increased strain with increasing nSML was verified experimentally by high-resolution X-ray diffraction (HRXRD) and Raman measurements as well. The experimental PL peak energy data were then validated with nextnano++ simulations based on Schrödinger - Poisson device solver. The hydrostatic and biaxial strain components were computed to correlate the experimental and simulation data. Hence with these enunciated understandings, we conclude that an ideal choice on the number of SML stacks that can be grown on a GaAs substrate was found to be 6 stacks, helpful to realize and fabricate QD based infrared photodetectors (QDIPs) devices in long wavelength regime.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/TNANO.2020.3009597</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5336-4068</orcidid><orcidid>https://orcid.org/0000-0001-8384-7706</orcidid><orcidid>https://orcid.org/0000-0002-8459-0890</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-125X
ispartof IEEE transactions on nanotechnology, 2020, Vol.19, p.601-608
issn 1536-125X
1941-0085
language eng
recordid cdi_crossref_primary_10_1109_TNANO_2020_3009597
source IEEE Electronic Library (IEL)
subjects Computer simulation
Engineering
Engineering, Electrical & Electronic
Epitaxial growth
Gallium arsenide
Heterostructures
Indium arsenides
Indium gallium arsenides
infrared photodetectors
Materials Science
Materials Science, Multidisciplinary
Molecular beam epitaxy
Monolayers
Nanoscience & Nanotechnology
Photodetectors
Photoluminescence
Photometers
Physical Sciences
Physics
Physics, Applied
Quantum dots
Science & Technology
Science & Technology - Other Topics
Stacking
Stacks
Strain
sub-monolayer growth
Substrates
Technology
Temperature measurement
title Study on Inter Band and Inter Sub-Band Optical Transitions With Varying InAs/InGaAs Sub-Monolayer Quantum Dot Heterostructure Stacks Grown by Molecular Beam Epitaxy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T16%3A49%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20Inter%20Band%20and%20Inter%20Sub-Band%20Optical%20Transitions%20With%20Varying%20InAs/InGaAs%20Sub-Monolayer%20Quantum%20Dot%20Heterostructure%20Stacks%20Grown%20by%20Molecular%20Beam%20Epitaxy&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Shriram,%20Saranya%20Reddy&rft.date=2020&rft.volume=19&rft.spage=601&rft.epage=608&rft.pages=601-608&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2020.3009597&rft_dat=%3Cproquest_RIE%3E2429902507%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429902507&rft_id=info:pmid/&rft_ieee_id=9143511&rfr_iscdi=true