Graphene Field-Effect Transistors for In Vitro and Ex Vivo Recordings
Recording extracellular potentials from electrogenic cells (especially neurons) is the hallmark destination of modern bioelectronics. While fabrication of flexible and biocompatible in vivo devices via silicon technology is complicated and time-consuming, graphene field-effect transistors (GFETs), i...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nanotechnology 2017-01, Vol.16 (1), p.140-147 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 147 |
---|---|
container_issue | 1 |
container_start_page | 140 |
container_title | IEEE transactions on nanotechnology |
container_volume | 16 |
creator | Kireev, Dmitry Zadorozhnyi, Ihor Tianyu Qiu Sarik, Dario Brings, Fabian Tianru Wu Seyock, Silke Maybeck, Vanessa Lottner, Martin Blaschke, Benno M. Garrido, Jose Xiaoming Xie Vitusevich, Svetlana Wolfrum, Bernhard Offenhuusser, Andreas |
description | Recording extracellular potentials from electrogenic cells (especially neurons) is the hallmark destination of modern bioelectronics. While fabrication of flexible and biocompatible in vivo devices via silicon technology is complicated and time-consuming, graphene field-effect transistors (GFETs), instead, can easily be fabricated on flexible and biocompatible substrates. In this work, we compare GFETs fabricated on rigid (SiO 2 /Si and sapphire) and flexible (polyimide) substrates. The GFETs, fabricated on the polyimide, exhibit extremely large transconductance values, up to 11 mS·V -1 , and mobility over 1750 cm 2 ·V -1 ·s -1 . In vitro recordings from cardiomyocyte-like cell culture are performed by GFETs on a rigid transparent substrate (sapphire). Via multichannel measurement, we are able to record and analyze both: difference in action potentials as well as their spatial propagation over the chip. Furthermore, the controllably flexible polyimide-on-steel (PIonS) substrates are able to ex vivo record electrical signals from primary embryonic rat heart tissue. Considering the flexibility of PIonS chips, together with the excellent sensitivity, we open up a new road into graphene-based in vivo biosensing. |
doi_str_mv | 10.1109/TNANO.2016.2639028 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNANO_2016_2639028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7782310</ieee_id><sourcerecordid>1858794591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-639079b8ce4710c81f935bf4810e1433b1d67e2a9ef1fe3a640dbc1af648ddbc3</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKd_QF8CPnfmJmmbPI7RzcHYQKb4FtL2RjtmM5NO9N_bueHTPRfOuffwEXILbATA9MN6OV6uRpxBNuKZ0IyrMzIALSFhTKXnvU5FlgBPXy_JVYwbxiDPUjUgxSzY3Tu2SKcNbuukcA6rjq6DbWMTOx8idT7QeUtfmi54atuaFt_98uXpE1Y-1E37Fq_JhbPbiDenOSTP02I9eUwWq9l8Ml4klZCySw7Ncl2qCmUOrFLgtEhLJxUwBClECXWWI7caHTgUNpOsLiuwLpOq7pUYkvvj3V3wn3uMndn4fWj7lwZUqnItUw29ix9dVfAxBnRmF5oPG34MMHPAZf5wmQMuc8LVh-6OoQYR_wN5rrgAJn4BKJ1lug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1858794591</pqid></control><display><type>article</type><title>Graphene Field-Effect Transistors for In Vitro and Ex Vivo Recordings</title><source>IEEE Electronic Library (IEL)</source><creator>Kireev, Dmitry ; Zadorozhnyi, Ihor ; Tianyu Qiu ; Sarik, Dario ; Brings, Fabian ; Tianru Wu ; Seyock, Silke ; Maybeck, Vanessa ; Lottner, Martin ; Blaschke, Benno M. ; Garrido, Jose ; Xiaoming Xie ; Vitusevich, Svetlana ; Wolfrum, Bernhard ; Offenhuusser, Andreas</creator><creatorcontrib>Kireev, Dmitry ; Zadorozhnyi, Ihor ; Tianyu Qiu ; Sarik, Dario ; Brings, Fabian ; Tianru Wu ; Seyock, Silke ; Maybeck, Vanessa ; Lottner, Martin ; Blaschke, Benno M. ; Garrido, Jose ; Xiaoming Xie ; Vitusevich, Svetlana ; Wolfrum, Bernhard ; Offenhuusser, Andreas</creatorcontrib><description>Recording extracellular potentials from electrogenic cells (especially neurons) is the hallmark destination of modern bioelectronics. While fabrication of flexible and biocompatible in vivo devices via silicon technology is complicated and time-consuming, graphene field-effect transistors (GFETs), instead, can easily be fabricated on flexible and biocompatible substrates. In this work, we compare GFETs fabricated on rigid (SiO 2 /Si and sapphire) and flexible (polyimide) substrates. The GFETs, fabricated on the polyimide, exhibit extremely large transconductance values, up to 11 mS·V -1 , and mobility over 1750 cm 2 ·V -1 ·s -1 . In vitro recordings from cardiomyocyte-like cell culture are performed by GFETs on a rigid transparent substrate (sapphire). Via multichannel measurement, we are able to record and analyze both: difference in action potentials as well as their spatial propagation over the chip. Furthermore, the controllably flexible polyimide-on-steel (PIonS) substrates are able to ex vivo record electrical signals from primary embryonic rat heart tissue. Considering the flexibility of PIonS chips, together with the excellent sensitivity, we open up a new road into graphene-based in vivo biosensing.</description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2016.2639028</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">ex vivo biosensor ; <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">in vitro biosensor ; Biocompatibility ; Bioelectronics ; Electric potential ; electrophysiology ; Extreme values ; Field effect transistors ; GFETs ; Graphene ; Mesons ; Pions ; Polyimides ; Sapphire ; Semiconductor device measurement ; Semiconductor devices ; Silicon dioxide ; Silicon substrates ; solution gating ; Substrates ; Transconductance ; Transistors</subject><ispartof>IEEE transactions on nanotechnology, 2017-01, Vol.16 (1), p.140-147</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-639079b8ce4710c81f935bf4810e1433b1d67e2a9ef1fe3a640dbc1af648ddbc3</citedby><cites>FETCH-LOGICAL-c344t-639079b8ce4710c81f935bf4810e1433b1d67e2a9ef1fe3a640dbc1af648ddbc3</cites><orcidid>0000-0001-6143-2702 ; 0000-0003-1499-5435</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7782310$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7782310$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kireev, Dmitry</creatorcontrib><creatorcontrib>Zadorozhnyi, Ihor</creatorcontrib><creatorcontrib>Tianyu Qiu</creatorcontrib><creatorcontrib>Sarik, Dario</creatorcontrib><creatorcontrib>Brings, Fabian</creatorcontrib><creatorcontrib>Tianru Wu</creatorcontrib><creatorcontrib>Seyock, Silke</creatorcontrib><creatorcontrib>Maybeck, Vanessa</creatorcontrib><creatorcontrib>Lottner, Martin</creatorcontrib><creatorcontrib>Blaschke, Benno M.</creatorcontrib><creatorcontrib>Garrido, Jose</creatorcontrib><creatorcontrib>Xiaoming Xie</creatorcontrib><creatorcontrib>Vitusevich, Svetlana</creatorcontrib><creatorcontrib>Wolfrum, Bernhard</creatorcontrib><creatorcontrib>Offenhuusser, Andreas</creatorcontrib><title>Graphene Field-Effect Transistors for In Vitro and Ex Vivo Recordings</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description>Recording extracellular potentials from electrogenic cells (especially neurons) is the hallmark destination of modern bioelectronics. While fabrication of flexible and biocompatible in vivo devices via silicon technology is complicated and time-consuming, graphene field-effect transistors (GFETs), instead, can easily be fabricated on flexible and biocompatible substrates. In this work, we compare GFETs fabricated on rigid (SiO 2 /Si and sapphire) and flexible (polyimide) substrates. The GFETs, fabricated on the polyimide, exhibit extremely large transconductance values, up to 11 mS·V -1 , and mobility over 1750 cm 2 ·V -1 ·s -1 . In vitro recordings from cardiomyocyte-like cell culture are performed by GFETs on a rigid transparent substrate (sapphire). Via multichannel measurement, we are able to record and analyze both: difference in action potentials as well as their spatial propagation over the chip. Furthermore, the controllably flexible polyimide-on-steel (PIonS) substrates are able to ex vivo record electrical signals from primary embryonic rat heart tissue. Considering the flexibility of PIonS chips, together with the excellent sensitivity, we open up a new road into graphene-based in vivo biosensing.</description><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">ex vivo biosensor</subject><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">in vitro biosensor</subject><subject>Biocompatibility</subject><subject>Bioelectronics</subject><subject>Electric potential</subject><subject>electrophysiology</subject><subject>Extreme values</subject><subject>Field effect transistors</subject><subject>GFETs</subject><subject>Graphene</subject><subject>Mesons</subject><subject>Pions</subject><subject>Polyimides</subject><subject>Sapphire</subject><subject>Semiconductor device measurement</subject><subject>Semiconductor devices</subject><subject>Silicon dioxide</subject><subject>Silicon substrates</subject><subject>solution gating</subject><subject>Substrates</subject><subject>Transconductance</subject><subject>Transistors</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAUhYMoOKd_QF8CPnfmJmmbPI7RzcHYQKb4FtL2RjtmM5NO9N_bueHTPRfOuffwEXILbATA9MN6OV6uRpxBNuKZ0IyrMzIALSFhTKXnvU5FlgBPXy_JVYwbxiDPUjUgxSzY3Tu2SKcNbuukcA6rjq6DbWMTOx8idT7QeUtfmi54atuaFt_98uXpE1Y-1E37Fq_JhbPbiDenOSTP02I9eUwWq9l8Ml4klZCySw7Ncl2qCmUOrFLgtEhLJxUwBClECXWWI7caHTgUNpOsLiuwLpOq7pUYkvvj3V3wn3uMndn4fWj7lwZUqnItUw29ix9dVfAxBnRmF5oPG34MMHPAZf5wmQMuc8LVh-6OoQYR_wN5rrgAJn4BKJ1lug</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Kireev, Dmitry</creator><creator>Zadorozhnyi, Ihor</creator><creator>Tianyu Qiu</creator><creator>Sarik, Dario</creator><creator>Brings, Fabian</creator><creator>Tianru Wu</creator><creator>Seyock, Silke</creator><creator>Maybeck, Vanessa</creator><creator>Lottner, Martin</creator><creator>Blaschke, Benno M.</creator><creator>Garrido, Jose</creator><creator>Xiaoming Xie</creator><creator>Vitusevich, Svetlana</creator><creator>Wolfrum, Bernhard</creator><creator>Offenhuusser, Andreas</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6143-2702</orcidid><orcidid>https://orcid.org/0000-0003-1499-5435</orcidid></search><sort><creationdate>20170101</creationdate><title>Graphene Field-Effect Transistors for In Vitro and Ex Vivo Recordings</title><author>Kireev, Dmitry ; Zadorozhnyi, Ihor ; Tianyu Qiu ; Sarik, Dario ; Brings, Fabian ; Tianru Wu ; Seyock, Silke ; Maybeck, Vanessa ; Lottner, Martin ; Blaschke, Benno M. ; Garrido, Jose ; Xiaoming Xie ; Vitusevich, Svetlana ; Wolfrum, Bernhard ; Offenhuusser, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-639079b8ce4710c81f935bf4810e1433b1d67e2a9ef1fe3a640dbc1af648ddbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">ex vivo biosensor</topic><topic><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">in vitro biosensor</topic><topic>Biocompatibility</topic><topic>Bioelectronics</topic><topic>Electric potential</topic><topic>electrophysiology</topic><topic>Extreme values</topic><topic>Field effect transistors</topic><topic>GFETs</topic><topic>Graphene</topic><topic>Mesons</topic><topic>Pions</topic><topic>Polyimides</topic><topic>Sapphire</topic><topic>Semiconductor device measurement</topic><topic>Semiconductor devices</topic><topic>Silicon dioxide</topic><topic>Silicon substrates</topic><topic>solution gating</topic><topic>Substrates</topic><topic>Transconductance</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kireev, Dmitry</creatorcontrib><creatorcontrib>Zadorozhnyi, Ihor</creatorcontrib><creatorcontrib>Tianyu Qiu</creatorcontrib><creatorcontrib>Sarik, Dario</creatorcontrib><creatorcontrib>Brings, Fabian</creatorcontrib><creatorcontrib>Tianru Wu</creatorcontrib><creatorcontrib>Seyock, Silke</creatorcontrib><creatorcontrib>Maybeck, Vanessa</creatorcontrib><creatorcontrib>Lottner, Martin</creatorcontrib><creatorcontrib>Blaschke, Benno M.</creatorcontrib><creatorcontrib>Garrido, Jose</creatorcontrib><creatorcontrib>Xiaoming Xie</creatorcontrib><creatorcontrib>Vitusevich, Svetlana</creatorcontrib><creatorcontrib>Wolfrum, Bernhard</creatorcontrib><creatorcontrib>Offenhuusser, Andreas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kireev, Dmitry</au><au>Zadorozhnyi, Ihor</au><au>Tianyu Qiu</au><au>Sarik, Dario</au><au>Brings, Fabian</au><au>Tianru Wu</au><au>Seyock, Silke</au><au>Maybeck, Vanessa</au><au>Lottner, Martin</au><au>Blaschke, Benno M.</au><au>Garrido, Jose</au><au>Xiaoming Xie</au><au>Vitusevich, Svetlana</au><au>Wolfrum, Bernhard</au><au>Offenhuusser, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene Field-Effect Transistors for In Vitro and Ex Vivo Recordings</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2017-01-01</date><risdate>2017</risdate><volume>16</volume><issue>1</issue><spage>140</spage><epage>147</epage><pages>140-147</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract>Recording extracellular potentials from electrogenic cells (especially neurons) is the hallmark destination of modern bioelectronics. While fabrication of flexible and biocompatible in vivo devices via silicon technology is complicated and time-consuming, graphene field-effect transistors (GFETs), instead, can easily be fabricated on flexible and biocompatible substrates. In this work, we compare GFETs fabricated on rigid (SiO 2 /Si and sapphire) and flexible (polyimide) substrates. The GFETs, fabricated on the polyimide, exhibit extremely large transconductance values, up to 11 mS·V -1 , and mobility over 1750 cm 2 ·V -1 ·s -1 . In vitro recordings from cardiomyocyte-like cell culture are performed by GFETs on a rigid transparent substrate (sapphire). Via multichannel measurement, we are able to record and analyze both: difference in action potentials as well as their spatial propagation over the chip. Furthermore, the controllably flexible polyimide-on-steel (PIonS) substrates are able to ex vivo record electrical signals from primary embryonic rat heart tissue. Considering the flexibility of PIonS chips, together with the excellent sensitivity, we open up a new road into graphene-based in vivo biosensing.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNANO.2016.2639028</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6143-2702</orcidid><orcidid>https://orcid.org/0000-0003-1499-5435</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-125X |
ispartof | IEEE transactions on nanotechnology, 2017-01, Vol.16 (1), p.140-147 |
issn | 1536-125X 1941-0085 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TNANO_2016_2639028 |
source | IEEE Electronic Library (IEL) |
subjects | <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">ex vivo biosensor <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">in vitro biosensor Biocompatibility Bioelectronics Electric potential electrophysiology Extreme values Field effect transistors GFETs Graphene Mesons Pions Polyimides Sapphire Semiconductor device measurement Semiconductor devices Silicon dioxide Silicon substrates solution gating Substrates Transconductance Transistors |
title | Graphene Field-Effect Transistors for In Vitro and Ex Vivo Recordings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A20%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene%20Field-Effect%20Transistors%20for%20In%20Vitro%20and%20Ex%20Vivo%20Recordings&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Kireev,%20Dmitry&rft.date=2017-01-01&rft.volume=16&rft.issue=1&rft.spage=140&rft.epage=147&rft.pages=140-147&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2016.2639028&rft_dat=%3Cproquest_RIE%3E1858794591%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1858794591&rft_id=info:pmid/&rft_ieee_id=7782310&rfr_iscdi=true |