Graphene Field-Effect Transistors for In Vitro and Ex Vivo Recordings

Recording extracellular potentials from electrogenic cells (especially neurons) is the hallmark destination of modern bioelectronics. While fabrication of flexible and biocompatible in vivo devices via silicon technology is complicated and time-consuming, graphene field-effect transistors (GFETs), i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nanotechnology 2017-01, Vol.16 (1), p.140-147
Hauptverfasser: Kireev, Dmitry, Zadorozhnyi, Ihor, Tianyu Qiu, Sarik, Dario, Brings, Fabian, Tianru Wu, Seyock, Silke, Maybeck, Vanessa, Lottner, Martin, Blaschke, Benno M., Garrido, Jose, Xiaoming Xie, Vitusevich, Svetlana, Wolfrum, Bernhard, Offenhuusser, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 147
container_issue 1
container_start_page 140
container_title IEEE transactions on nanotechnology
container_volume 16
creator Kireev, Dmitry
Zadorozhnyi, Ihor
Tianyu Qiu
Sarik, Dario
Brings, Fabian
Tianru Wu
Seyock, Silke
Maybeck, Vanessa
Lottner, Martin
Blaschke, Benno M.
Garrido, Jose
Xiaoming Xie
Vitusevich, Svetlana
Wolfrum, Bernhard
Offenhuusser, Andreas
description Recording extracellular potentials from electrogenic cells (especially neurons) is the hallmark destination of modern bioelectronics. While fabrication of flexible and biocompatible in vivo devices via silicon technology is complicated and time-consuming, graphene field-effect transistors (GFETs), instead, can easily be fabricated on flexible and biocompatible substrates. In this work, we compare GFETs fabricated on rigid (SiO 2 /Si and sapphire) and flexible (polyimide) substrates. The GFETs, fabricated on the polyimide, exhibit extremely large transconductance values, up to 11 mS·V -1 , and mobility over 1750 cm 2 ·V -1 ·s -1 . In vitro recordings from cardiomyocyte-like cell culture are performed by GFETs on a rigid transparent substrate (sapphire). Via multichannel measurement, we are able to record and analyze both: difference in action potentials as well as their spatial propagation over the chip. Furthermore, the controllably flexible polyimide-on-steel (PIonS) substrates are able to ex vivo record electrical signals from primary embryonic rat heart tissue. Considering the flexibility of PIonS chips, together with the excellent sensitivity, we open up a new road into graphene-based in vivo biosensing.
doi_str_mv 10.1109/TNANO.2016.2639028
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNANO_2016_2639028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7782310</ieee_id><sourcerecordid>1858794591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-639079b8ce4710c81f935bf4810e1433b1d67e2a9ef1fe3a640dbc1af648ddbc3</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKd_QF8CPnfmJmmbPI7RzcHYQKb4FtL2RjtmM5NO9N_bueHTPRfOuffwEXILbATA9MN6OV6uRpxBNuKZ0IyrMzIALSFhTKXnvU5FlgBPXy_JVYwbxiDPUjUgxSzY3Tu2SKcNbuukcA6rjq6DbWMTOx8idT7QeUtfmi54atuaFt_98uXpE1Y-1E37Fq_JhbPbiDenOSTP02I9eUwWq9l8Ml4klZCySw7Ncl2qCmUOrFLgtEhLJxUwBClECXWWI7caHTgUNpOsLiuwLpOq7pUYkvvj3V3wn3uMndn4fWj7lwZUqnItUw29ix9dVfAxBnRmF5oPG34MMHPAZf5wmQMuc8LVh-6OoQYR_wN5rrgAJn4BKJ1lug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1858794591</pqid></control><display><type>article</type><title>Graphene Field-Effect Transistors for In Vitro and Ex Vivo Recordings</title><source>IEEE Electronic Library (IEL)</source><creator>Kireev, Dmitry ; Zadorozhnyi, Ihor ; Tianyu Qiu ; Sarik, Dario ; Brings, Fabian ; Tianru Wu ; Seyock, Silke ; Maybeck, Vanessa ; Lottner, Martin ; Blaschke, Benno M. ; Garrido, Jose ; Xiaoming Xie ; Vitusevich, Svetlana ; Wolfrum, Bernhard ; Offenhuusser, Andreas</creator><creatorcontrib>Kireev, Dmitry ; Zadorozhnyi, Ihor ; Tianyu Qiu ; Sarik, Dario ; Brings, Fabian ; Tianru Wu ; Seyock, Silke ; Maybeck, Vanessa ; Lottner, Martin ; Blaschke, Benno M. ; Garrido, Jose ; Xiaoming Xie ; Vitusevich, Svetlana ; Wolfrum, Bernhard ; Offenhuusser, Andreas</creatorcontrib><description>Recording extracellular potentials from electrogenic cells (especially neurons) is the hallmark destination of modern bioelectronics. While fabrication of flexible and biocompatible in vivo devices via silicon technology is complicated and time-consuming, graphene field-effect transistors (GFETs), instead, can easily be fabricated on flexible and biocompatible substrates. In this work, we compare GFETs fabricated on rigid (SiO 2 /Si and sapphire) and flexible (polyimide) substrates. The GFETs, fabricated on the polyimide, exhibit extremely large transconductance values, up to 11 mS·V -1 , and mobility over 1750 cm 2 ·V -1 ·s -1 . In vitro recordings from cardiomyocyte-like cell culture are performed by GFETs on a rigid transparent substrate (sapphire). Via multichannel measurement, we are able to record and analyze both: difference in action potentials as well as their spatial propagation over the chip. Furthermore, the controllably flexible polyimide-on-steel (PIonS) substrates are able to ex vivo record electrical signals from primary embryonic rat heart tissue. Considering the flexibility of PIonS chips, together with the excellent sensitivity, we open up a new road into graphene-based in vivo biosensing.</description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2016.2639028</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;ex vivo biosensor ; &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;in vitro biosensor ; Biocompatibility ; Bioelectronics ; Electric potential ; electrophysiology ; Extreme values ; Field effect transistors ; GFETs ; Graphene ; Mesons ; Pions ; Polyimides ; Sapphire ; Semiconductor device measurement ; Semiconductor devices ; Silicon dioxide ; Silicon substrates ; solution gating ; Substrates ; Transconductance ; Transistors</subject><ispartof>IEEE transactions on nanotechnology, 2017-01, Vol.16 (1), p.140-147</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-639079b8ce4710c81f935bf4810e1433b1d67e2a9ef1fe3a640dbc1af648ddbc3</citedby><cites>FETCH-LOGICAL-c344t-639079b8ce4710c81f935bf4810e1433b1d67e2a9ef1fe3a640dbc1af648ddbc3</cites><orcidid>0000-0001-6143-2702 ; 0000-0003-1499-5435</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7782310$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7782310$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kireev, Dmitry</creatorcontrib><creatorcontrib>Zadorozhnyi, Ihor</creatorcontrib><creatorcontrib>Tianyu Qiu</creatorcontrib><creatorcontrib>Sarik, Dario</creatorcontrib><creatorcontrib>Brings, Fabian</creatorcontrib><creatorcontrib>Tianru Wu</creatorcontrib><creatorcontrib>Seyock, Silke</creatorcontrib><creatorcontrib>Maybeck, Vanessa</creatorcontrib><creatorcontrib>Lottner, Martin</creatorcontrib><creatorcontrib>Blaschke, Benno M.</creatorcontrib><creatorcontrib>Garrido, Jose</creatorcontrib><creatorcontrib>Xiaoming Xie</creatorcontrib><creatorcontrib>Vitusevich, Svetlana</creatorcontrib><creatorcontrib>Wolfrum, Bernhard</creatorcontrib><creatorcontrib>Offenhuusser, Andreas</creatorcontrib><title>Graphene Field-Effect Transistors for In Vitro and Ex Vivo Recordings</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description>Recording extracellular potentials from electrogenic cells (especially neurons) is the hallmark destination of modern bioelectronics. While fabrication of flexible and biocompatible in vivo devices via silicon technology is complicated and time-consuming, graphene field-effect transistors (GFETs), instead, can easily be fabricated on flexible and biocompatible substrates. In this work, we compare GFETs fabricated on rigid (SiO 2 /Si and sapphire) and flexible (polyimide) substrates. The GFETs, fabricated on the polyimide, exhibit extremely large transconductance values, up to 11 mS·V -1 , and mobility over 1750 cm 2 ·V -1 ·s -1 . In vitro recordings from cardiomyocyte-like cell culture are performed by GFETs on a rigid transparent substrate (sapphire). Via multichannel measurement, we are able to record and analyze both: difference in action potentials as well as their spatial propagation over the chip. Furthermore, the controllably flexible polyimide-on-steel (PIonS) substrates are able to ex vivo record electrical signals from primary embryonic rat heart tissue. Considering the flexibility of PIonS chips, together with the excellent sensitivity, we open up a new road into graphene-based in vivo biosensing.</description><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;ex vivo biosensor</subject><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;in vitro biosensor</subject><subject>Biocompatibility</subject><subject>Bioelectronics</subject><subject>Electric potential</subject><subject>electrophysiology</subject><subject>Extreme values</subject><subject>Field effect transistors</subject><subject>GFETs</subject><subject>Graphene</subject><subject>Mesons</subject><subject>Pions</subject><subject>Polyimides</subject><subject>Sapphire</subject><subject>Semiconductor device measurement</subject><subject>Semiconductor devices</subject><subject>Silicon dioxide</subject><subject>Silicon substrates</subject><subject>solution gating</subject><subject>Substrates</subject><subject>Transconductance</subject><subject>Transistors</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAUhYMoOKd_QF8CPnfmJmmbPI7RzcHYQKb4FtL2RjtmM5NO9N_bueHTPRfOuffwEXILbATA9MN6OV6uRpxBNuKZ0IyrMzIALSFhTKXnvU5FlgBPXy_JVYwbxiDPUjUgxSzY3Tu2SKcNbuukcA6rjq6DbWMTOx8idT7QeUtfmi54atuaFt_98uXpE1Y-1E37Fq_JhbPbiDenOSTP02I9eUwWq9l8Ml4klZCySw7Ncl2qCmUOrFLgtEhLJxUwBClECXWWI7caHTgUNpOsLiuwLpOq7pUYkvvj3V3wn3uMndn4fWj7lwZUqnItUw29ix9dVfAxBnRmF5oPG34MMHPAZf5wmQMuc8LVh-6OoQYR_wN5rrgAJn4BKJ1lug</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Kireev, Dmitry</creator><creator>Zadorozhnyi, Ihor</creator><creator>Tianyu Qiu</creator><creator>Sarik, Dario</creator><creator>Brings, Fabian</creator><creator>Tianru Wu</creator><creator>Seyock, Silke</creator><creator>Maybeck, Vanessa</creator><creator>Lottner, Martin</creator><creator>Blaschke, Benno M.</creator><creator>Garrido, Jose</creator><creator>Xiaoming Xie</creator><creator>Vitusevich, Svetlana</creator><creator>Wolfrum, Bernhard</creator><creator>Offenhuusser, Andreas</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6143-2702</orcidid><orcidid>https://orcid.org/0000-0003-1499-5435</orcidid></search><sort><creationdate>20170101</creationdate><title>Graphene Field-Effect Transistors for In Vitro and Ex Vivo Recordings</title><author>Kireev, Dmitry ; Zadorozhnyi, Ihor ; Tianyu Qiu ; Sarik, Dario ; Brings, Fabian ; Tianru Wu ; Seyock, Silke ; Maybeck, Vanessa ; Lottner, Martin ; Blaschke, Benno M. ; Garrido, Jose ; Xiaoming Xie ; Vitusevich, Svetlana ; Wolfrum, Bernhard ; Offenhuusser, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-639079b8ce4710c81f935bf4810e1433b1d67e2a9ef1fe3a640dbc1af648ddbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;ex vivo biosensor</topic><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;in vitro biosensor</topic><topic>Biocompatibility</topic><topic>Bioelectronics</topic><topic>Electric potential</topic><topic>electrophysiology</topic><topic>Extreme values</topic><topic>Field effect transistors</topic><topic>GFETs</topic><topic>Graphene</topic><topic>Mesons</topic><topic>Pions</topic><topic>Polyimides</topic><topic>Sapphire</topic><topic>Semiconductor device measurement</topic><topic>Semiconductor devices</topic><topic>Silicon dioxide</topic><topic>Silicon substrates</topic><topic>solution gating</topic><topic>Substrates</topic><topic>Transconductance</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kireev, Dmitry</creatorcontrib><creatorcontrib>Zadorozhnyi, Ihor</creatorcontrib><creatorcontrib>Tianyu Qiu</creatorcontrib><creatorcontrib>Sarik, Dario</creatorcontrib><creatorcontrib>Brings, Fabian</creatorcontrib><creatorcontrib>Tianru Wu</creatorcontrib><creatorcontrib>Seyock, Silke</creatorcontrib><creatorcontrib>Maybeck, Vanessa</creatorcontrib><creatorcontrib>Lottner, Martin</creatorcontrib><creatorcontrib>Blaschke, Benno M.</creatorcontrib><creatorcontrib>Garrido, Jose</creatorcontrib><creatorcontrib>Xiaoming Xie</creatorcontrib><creatorcontrib>Vitusevich, Svetlana</creatorcontrib><creatorcontrib>Wolfrum, Bernhard</creatorcontrib><creatorcontrib>Offenhuusser, Andreas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kireev, Dmitry</au><au>Zadorozhnyi, Ihor</au><au>Tianyu Qiu</au><au>Sarik, Dario</au><au>Brings, Fabian</au><au>Tianru Wu</au><au>Seyock, Silke</au><au>Maybeck, Vanessa</au><au>Lottner, Martin</au><au>Blaschke, Benno M.</au><au>Garrido, Jose</au><au>Xiaoming Xie</au><au>Vitusevich, Svetlana</au><au>Wolfrum, Bernhard</au><au>Offenhuusser, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene Field-Effect Transistors for In Vitro and Ex Vivo Recordings</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2017-01-01</date><risdate>2017</risdate><volume>16</volume><issue>1</issue><spage>140</spage><epage>147</epage><pages>140-147</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract>Recording extracellular potentials from electrogenic cells (especially neurons) is the hallmark destination of modern bioelectronics. While fabrication of flexible and biocompatible in vivo devices via silicon technology is complicated and time-consuming, graphene field-effect transistors (GFETs), instead, can easily be fabricated on flexible and biocompatible substrates. In this work, we compare GFETs fabricated on rigid (SiO 2 /Si and sapphire) and flexible (polyimide) substrates. The GFETs, fabricated on the polyimide, exhibit extremely large transconductance values, up to 11 mS·V -1 , and mobility over 1750 cm 2 ·V -1 ·s -1 . In vitro recordings from cardiomyocyte-like cell culture are performed by GFETs on a rigid transparent substrate (sapphire). Via multichannel measurement, we are able to record and analyze both: difference in action potentials as well as their spatial propagation over the chip. Furthermore, the controllably flexible polyimide-on-steel (PIonS) substrates are able to ex vivo record electrical signals from primary embryonic rat heart tissue. Considering the flexibility of PIonS chips, together with the excellent sensitivity, we open up a new road into graphene-based in vivo biosensing.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNANO.2016.2639028</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6143-2702</orcidid><orcidid>https://orcid.org/0000-0003-1499-5435</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-125X
ispartof IEEE transactions on nanotechnology, 2017-01, Vol.16 (1), p.140-147
issn 1536-125X
1941-0085
language eng
recordid cdi_crossref_primary_10_1109_TNANO_2016_2639028
source IEEE Electronic Library (IEL)
subjects <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">ex vivo biosensor
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">in vitro biosensor
Biocompatibility
Bioelectronics
Electric potential
electrophysiology
Extreme values
Field effect transistors
GFETs
Graphene
Mesons
Pions
Polyimides
Sapphire
Semiconductor device measurement
Semiconductor devices
Silicon dioxide
Silicon substrates
solution gating
Substrates
Transconductance
Transistors
title Graphene Field-Effect Transistors for In Vitro and Ex Vivo Recordings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A20%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene%20Field-Effect%20Transistors%20for%20In%20Vitro%20and%20Ex%20Vivo%20Recordings&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Kireev,%20Dmitry&rft.date=2017-01-01&rft.volume=16&rft.issue=1&rft.spage=140&rft.epage=147&rft.pages=140-147&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2016.2639028&rft_dat=%3Cproquest_RIE%3E1858794591%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1858794591&rft_id=info:pmid/&rft_ieee_id=7782310&rfr_iscdi=true