Self-Controlled Writing and Erasing in a Memristor Crossbar Memory
The memristor device technology has created waves in the research community and led to the consideration of using the device in multiple avenues. The most likely candidate for early adoption is the nonvolatile memory due to the small cell size (increased scaling potential), increased density as comp...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nanotechnology 2011-11, Vol.10 (6), p.1454-1463 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1463 |
---|---|
container_issue | 6 |
container_start_page | 1454 |
container_title | IEEE transactions on nanotechnology |
container_volume | 10 |
creator | Ebong, I. E. Mazumder, P. |
description | The memristor device technology has created waves in the research community and led to the consideration of using the device in multiple avenues. The most likely candidate for early adoption is the nonvolatile memory due to the small cell size (increased scaling potential), increased density as compared to flash, and ability to stack these devices in a crossbar structure. This paper analyzes the feasibility of a memristor memory and introduces an adaptive read, write, and erase method that may be used to realize a more resilient memory system in the face of low yield in the nanotechnology regime. The proposed method is evaluated in simulation program with integrated circuit emphasis (SPICE) and a hand analysis model is extracted to help explain the sources of power and energy consumption. Finally, the power metrics are compared to flash memory technology, and the memristor memory is shown to have an energy per bit consumption about one-tenth that of flash when programming, comparable to flash when erasing, and about one-fourth of flash when reading. |
doi_str_mv | 10.1109/TNANO.2011.2166805 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNANO_2011_2166805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6069931</ieee_id><sourcerecordid>963904531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-5ecdd7d52184b7e43987c46627e7fe34c4fbef1d58a82db90c43105dfb8ba3253</originalsourceid><addsrcrecordid>eNpdkMtOwzAQRS0EEqXwA7CJkBCrFL9jL0tVHlJpFxTBznL8QKnSuNjpon9PQqsuWM1o5tzRnQvANYIjhKB8WM7H88UIQ4RGGHEuIDsBAyQpyiEU7LTrGeE5wuzrHFyktIIQFZyJAXh8d7XPJ6FpY6hrZ7PPWLVV853pxmbTqFPfV02msze3jlVqQ8wmMaRU6tiPQtxdgjOv6-SuDnUIPp6my8lLPls8v07Gs9xQztucOWNtYRlGgpaFo0SKot_gwhXeEWqoL51HlgktsC0lNJQgyKwvRakJZmQI7vd3NzH8bF1q1bpKxtW1blzYJiU5kZAygjry9h-5CtvYdOaURKTAWGLcQXgPmf6d6LzaxGqt404hqPpQ1V-oqg9VHULtRHeHyzoZXfuoG1OloxIzLBhnsONu9lzlnDuuOeRSdv5-ARXsfxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>913722922</pqid></control><display><type>article</type><title>Self-Controlled Writing and Erasing in a Memristor Crossbar Memory</title><source>IEEE Electronic Library (IEL)</source><creator>Ebong, I. E. ; Mazumder, P.</creator><creatorcontrib>Ebong, I. E. ; Mazumder, P.</creatorcontrib><description>The memristor device technology has created waves in the research community and led to the consideration of using the device in multiple avenues. The most likely candidate for early adoption is the nonvolatile memory due to the small cell size (increased scaling potential), increased density as compared to flash, and ability to stack these devices in a crossbar structure. This paper analyzes the feasibility of a memristor memory and introduces an adaptive read, write, and erase method that may be used to realize a more resilient memory system in the face of low yield in the nanotechnology regime. The proposed method is evaluated in simulation program with integrated circuit emphasis (SPICE) and a hand analysis model is extracted to help explain the sources of power and energy consumption. Finally, the power metrics are compared to flash memory technology, and the memristor memory is shown to have an energy per bit consumption about one-tenth that of flash when programming, comparable to flash when erasing, and about one-fourth of flash when reading.</description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2011.2166805</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptation models ; Applied sciences ; Communities ; Computer memory ; Density ; Design. Technologies. Operation analysis. Testing ; Devices ; Electronic equipment and fabrication. Passive components, printed wiring boards, connectics ; Electronics ; Energy consumption ; Exact sciences and technology ; Feasibility ; Flash memory (computers) ; Integrated circuits ; Integrated circuits by function (including memories and processors) ; Magnetic and optical mass memories ; Memristor ; Memristors ; Nanotechnology ; Programming ; Random access memory ; Resistance ; resistive random access memory (RAM) ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Storage and reproduction of information</subject><ispartof>IEEE transactions on nanotechnology, 2011-11, Vol.10 (6), p.1454-1463</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-5ecdd7d52184b7e43987c46627e7fe34c4fbef1d58a82db90c43105dfb8ba3253</citedby><cites>FETCH-LOGICAL-c466t-5ecdd7d52184b7e43987c46627e7fe34c4fbef1d58a82db90c43105dfb8ba3253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6069931$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6069931$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25285650$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ebong, I. E.</creatorcontrib><creatorcontrib>Mazumder, P.</creatorcontrib><title>Self-Controlled Writing and Erasing in a Memristor Crossbar Memory</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description>The memristor device technology has created waves in the research community and led to the consideration of using the device in multiple avenues. The most likely candidate for early adoption is the nonvolatile memory due to the small cell size (increased scaling potential), increased density as compared to flash, and ability to stack these devices in a crossbar structure. This paper analyzes the feasibility of a memristor memory and introduces an adaptive read, write, and erase method that may be used to realize a more resilient memory system in the face of low yield in the nanotechnology regime. The proposed method is evaluated in simulation program with integrated circuit emphasis (SPICE) and a hand analysis model is extracted to help explain the sources of power and energy consumption. Finally, the power metrics are compared to flash memory technology, and the memristor memory is shown to have an energy per bit consumption about one-tenth that of flash when programming, comparable to flash when erasing, and about one-fourth of flash when reading.</description><subject>Adaptation models</subject><subject>Applied sciences</subject><subject>Communities</subject><subject>Computer memory</subject><subject>Density</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Devices</subject><subject>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</subject><subject>Electronics</subject><subject>Energy consumption</subject><subject>Exact sciences and technology</subject><subject>Feasibility</subject><subject>Flash memory (computers)</subject><subject>Integrated circuits</subject><subject>Integrated circuits by function (including memories and processors)</subject><subject>Magnetic and optical mass memories</subject><subject>Memristor</subject><subject>Memristors</subject><subject>Nanotechnology</subject><subject>Programming</subject><subject>Random access memory</subject><subject>Resistance</subject><subject>resistive random access memory (RAM)</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Storage and reproduction of information</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtOwzAQRS0EEqXwA7CJkBCrFL9jL0tVHlJpFxTBznL8QKnSuNjpon9PQqsuWM1o5tzRnQvANYIjhKB8WM7H88UIQ4RGGHEuIDsBAyQpyiEU7LTrGeE5wuzrHFyktIIQFZyJAXh8d7XPJ6FpY6hrZ7PPWLVV853pxmbTqFPfV02msze3jlVqQ8wmMaRU6tiPQtxdgjOv6-SuDnUIPp6my8lLPls8v07Gs9xQztucOWNtYRlGgpaFo0SKot_gwhXeEWqoL51HlgktsC0lNJQgyKwvRakJZmQI7vd3NzH8bF1q1bpKxtW1blzYJiU5kZAygjry9h-5CtvYdOaURKTAWGLcQXgPmf6d6LzaxGqt404hqPpQ1V-oqg9VHULtRHeHyzoZXfuoG1OloxIzLBhnsONu9lzlnDuuOeRSdv5-ARXsfxQ</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Ebong, I. E.</creator><creator>Mazumder, P.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20111101</creationdate><title>Self-Controlled Writing and Erasing in a Memristor Crossbar Memory</title><author>Ebong, I. E. ; Mazumder, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-5ecdd7d52184b7e43987c46627e7fe34c4fbef1d58a82db90c43105dfb8ba3253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptation models</topic><topic>Applied sciences</topic><topic>Communities</topic><topic>Computer memory</topic><topic>Density</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Devices</topic><topic>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</topic><topic>Electronics</topic><topic>Energy consumption</topic><topic>Exact sciences and technology</topic><topic>Feasibility</topic><topic>Flash memory (computers)</topic><topic>Integrated circuits</topic><topic>Integrated circuits by function (including memories and processors)</topic><topic>Magnetic and optical mass memories</topic><topic>Memristor</topic><topic>Memristors</topic><topic>Nanotechnology</topic><topic>Programming</topic><topic>Random access memory</topic><topic>Resistance</topic><topic>resistive random access memory (RAM)</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Storage and reproduction of information</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ebong, I. E.</creatorcontrib><creatorcontrib>Mazumder, P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ebong, I. E.</au><au>Mazumder, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Controlled Writing and Erasing in a Memristor Crossbar Memory</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2011-11-01</date><risdate>2011</risdate><volume>10</volume><issue>6</issue><spage>1454</spage><epage>1463</epage><pages>1454-1463</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract>The memristor device technology has created waves in the research community and led to the consideration of using the device in multiple avenues. The most likely candidate for early adoption is the nonvolatile memory due to the small cell size (increased scaling potential), increased density as compared to flash, and ability to stack these devices in a crossbar structure. This paper analyzes the feasibility of a memristor memory and introduces an adaptive read, write, and erase method that may be used to realize a more resilient memory system in the face of low yield in the nanotechnology regime. The proposed method is evaluated in simulation program with integrated circuit emphasis (SPICE) and a hand analysis model is extracted to help explain the sources of power and energy consumption. Finally, the power metrics are compared to flash memory technology, and the memristor memory is shown to have an energy per bit consumption about one-tenth that of flash when programming, comparable to flash when erasing, and about one-fourth of flash when reading.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TNANO.2011.2166805</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-125X |
ispartof | IEEE transactions on nanotechnology, 2011-11, Vol.10 (6), p.1454-1463 |
issn | 1536-125X 1941-0085 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TNANO_2011_2166805 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models Applied sciences Communities Computer memory Density Design. Technologies. Operation analysis. Testing Devices Electronic equipment and fabrication. Passive components, printed wiring boards, connectics Electronics Energy consumption Exact sciences and technology Feasibility Flash memory (computers) Integrated circuits Integrated circuits by function (including memories and processors) Magnetic and optical mass memories Memristor Memristors Nanotechnology Programming Random access memory Resistance resistive random access memory (RAM) Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Storage and reproduction of information |
title | Self-Controlled Writing and Erasing in a Memristor Crossbar Memory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A30%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Controlled%20Writing%20and%20Erasing%20in%20a%20Memristor%20Crossbar%20Memory&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Ebong,%20I.%20E.&rft.date=2011-11-01&rft.volume=10&rft.issue=6&rft.spage=1454&rft.epage=1463&rft.pages=1454-1463&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2011.2166805&rft_dat=%3Cproquest_RIE%3E963904531%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=913722922&rft_id=info:pmid/&rft_ieee_id=6069931&rfr_iscdi=true |