Self-Controlled Writing and Erasing in a Memristor Crossbar Memory

The memristor device technology has created waves in the research community and led to the consideration of using the device in multiple avenues. The most likely candidate for early adoption is the nonvolatile memory due to the small cell size (increased scaling potential), increased density as comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nanotechnology 2011-11, Vol.10 (6), p.1454-1463
Hauptverfasser: Ebong, I. E., Mazumder, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1463
container_issue 6
container_start_page 1454
container_title IEEE transactions on nanotechnology
container_volume 10
creator Ebong, I. E.
Mazumder, P.
description The memristor device technology has created waves in the research community and led to the consideration of using the device in multiple avenues. The most likely candidate for early adoption is the nonvolatile memory due to the small cell size (increased scaling potential), increased density as compared to flash, and ability to stack these devices in a crossbar structure. This paper analyzes the feasibility of a memristor memory and introduces an adaptive read, write, and erase method that may be used to realize a more resilient memory system in the face of low yield in the nanotechnology regime. The proposed method is evaluated in simulation program with integrated circuit emphasis (SPICE) and a hand analysis model is extracted to help explain the sources of power and energy consumption. Finally, the power metrics are compared to flash memory technology, and the memristor memory is shown to have an energy per bit consumption about one-tenth that of flash when programming, comparable to flash when erasing, and about one-fourth of flash when reading.
doi_str_mv 10.1109/TNANO.2011.2166805
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNANO_2011_2166805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6069931</ieee_id><sourcerecordid>963904531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-5ecdd7d52184b7e43987c46627e7fe34c4fbef1d58a82db90c43105dfb8ba3253</originalsourceid><addsrcrecordid>eNpdkMtOwzAQRS0EEqXwA7CJkBCrFL9jL0tVHlJpFxTBznL8QKnSuNjpon9PQqsuWM1o5tzRnQvANYIjhKB8WM7H88UIQ4RGGHEuIDsBAyQpyiEU7LTrGeE5wuzrHFyktIIQFZyJAXh8d7XPJ6FpY6hrZ7PPWLVV853pxmbTqFPfV02msze3jlVqQ8wmMaRU6tiPQtxdgjOv6-SuDnUIPp6my8lLPls8v07Gs9xQztucOWNtYRlGgpaFo0SKot_gwhXeEWqoL51HlgktsC0lNJQgyKwvRakJZmQI7vd3NzH8bF1q1bpKxtW1blzYJiU5kZAygjry9h-5CtvYdOaURKTAWGLcQXgPmf6d6LzaxGqt404hqPpQ1V-oqg9VHULtRHeHyzoZXfuoG1OloxIzLBhnsONu9lzlnDuuOeRSdv5-ARXsfxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>913722922</pqid></control><display><type>article</type><title>Self-Controlled Writing and Erasing in a Memristor Crossbar Memory</title><source>IEEE Electronic Library (IEL)</source><creator>Ebong, I. E. ; Mazumder, P.</creator><creatorcontrib>Ebong, I. E. ; Mazumder, P.</creatorcontrib><description>The memristor device technology has created waves in the research community and led to the consideration of using the device in multiple avenues. The most likely candidate for early adoption is the nonvolatile memory due to the small cell size (increased scaling potential), increased density as compared to flash, and ability to stack these devices in a crossbar structure. This paper analyzes the feasibility of a memristor memory and introduces an adaptive read, write, and erase method that may be used to realize a more resilient memory system in the face of low yield in the nanotechnology regime. The proposed method is evaluated in simulation program with integrated circuit emphasis (SPICE) and a hand analysis model is extracted to help explain the sources of power and energy consumption. Finally, the power metrics are compared to flash memory technology, and the memristor memory is shown to have an energy per bit consumption about one-tenth that of flash when programming, comparable to flash when erasing, and about one-fourth of flash when reading.</description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2011.2166805</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptation models ; Applied sciences ; Communities ; Computer memory ; Density ; Design. Technologies. Operation analysis. Testing ; Devices ; Electronic equipment and fabrication. Passive components, printed wiring boards, connectics ; Electronics ; Energy consumption ; Exact sciences and technology ; Feasibility ; Flash memory (computers) ; Integrated circuits ; Integrated circuits by function (including memories and processors) ; Magnetic and optical mass memories ; Memristor ; Memristors ; Nanotechnology ; Programming ; Random access memory ; Resistance ; resistive random access memory (RAM) ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Storage and reproduction of information</subject><ispartof>IEEE transactions on nanotechnology, 2011-11, Vol.10 (6), p.1454-1463</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-5ecdd7d52184b7e43987c46627e7fe34c4fbef1d58a82db90c43105dfb8ba3253</citedby><cites>FETCH-LOGICAL-c466t-5ecdd7d52184b7e43987c46627e7fe34c4fbef1d58a82db90c43105dfb8ba3253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6069931$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6069931$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25285650$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ebong, I. E.</creatorcontrib><creatorcontrib>Mazumder, P.</creatorcontrib><title>Self-Controlled Writing and Erasing in a Memristor Crossbar Memory</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description>The memristor device technology has created waves in the research community and led to the consideration of using the device in multiple avenues. The most likely candidate for early adoption is the nonvolatile memory due to the small cell size (increased scaling potential), increased density as compared to flash, and ability to stack these devices in a crossbar structure. This paper analyzes the feasibility of a memristor memory and introduces an adaptive read, write, and erase method that may be used to realize a more resilient memory system in the face of low yield in the nanotechnology regime. The proposed method is evaluated in simulation program with integrated circuit emphasis (SPICE) and a hand analysis model is extracted to help explain the sources of power and energy consumption. Finally, the power metrics are compared to flash memory technology, and the memristor memory is shown to have an energy per bit consumption about one-tenth that of flash when programming, comparable to flash when erasing, and about one-fourth of flash when reading.</description><subject>Adaptation models</subject><subject>Applied sciences</subject><subject>Communities</subject><subject>Computer memory</subject><subject>Density</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Devices</subject><subject>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</subject><subject>Electronics</subject><subject>Energy consumption</subject><subject>Exact sciences and technology</subject><subject>Feasibility</subject><subject>Flash memory (computers)</subject><subject>Integrated circuits</subject><subject>Integrated circuits by function (including memories and processors)</subject><subject>Magnetic and optical mass memories</subject><subject>Memristor</subject><subject>Memristors</subject><subject>Nanotechnology</subject><subject>Programming</subject><subject>Random access memory</subject><subject>Resistance</subject><subject>resistive random access memory (RAM)</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Storage and reproduction of information</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtOwzAQRS0EEqXwA7CJkBCrFL9jL0tVHlJpFxTBznL8QKnSuNjpon9PQqsuWM1o5tzRnQvANYIjhKB8WM7H88UIQ4RGGHEuIDsBAyQpyiEU7LTrGeE5wuzrHFyktIIQFZyJAXh8d7XPJ6FpY6hrZ7PPWLVV853pxmbTqFPfV02msze3jlVqQ8wmMaRU6tiPQtxdgjOv6-SuDnUIPp6my8lLPls8v07Gs9xQztucOWNtYRlGgpaFo0SKot_gwhXeEWqoL51HlgktsC0lNJQgyKwvRakJZmQI7vd3NzH8bF1q1bpKxtW1blzYJiU5kZAygjry9h-5CtvYdOaURKTAWGLcQXgPmf6d6LzaxGqt404hqPpQ1V-oqg9VHULtRHeHyzoZXfuoG1OloxIzLBhnsONu9lzlnDuuOeRSdv5-ARXsfxQ</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Ebong, I. E.</creator><creator>Mazumder, P.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20111101</creationdate><title>Self-Controlled Writing and Erasing in a Memristor Crossbar Memory</title><author>Ebong, I. E. ; Mazumder, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-5ecdd7d52184b7e43987c46627e7fe34c4fbef1d58a82db90c43105dfb8ba3253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptation models</topic><topic>Applied sciences</topic><topic>Communities</topic><topic>Computer memory</topic><topic>Density</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Devices</topic><topic>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</topic><topic>Electronics</topic><topic>Energy consumption</topic><topic>Exact sciences and technology</topic><topic>Feasibility</topic><topic>Flash memory (computers)</topic><topic>Integrated circuits</topic><topic>Integrated circuits by function (including memories and processors)</topic><topic>Magnetic and optical mass memories</topic><topic>Memristor</topic><topic>Memristors</topic><topic>Nanotechnology</topic><topic>Programming</topic><topic>Random access memory</topic><topic>Resistance</topic><topic>resistive random access memory (RAM)</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Storage and reproduction of information</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ebong, I. E.</creatorcontrib><creatorcontrib>Mazumder, P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ebong, I. E.</au><au>Mazumder, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Controlled Writing and Erasing in a Memristor Crossbar Memory</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2011-11-01</date><risdate>2011</risdate><volume>10</volume><issue>6</issue><spage>1454</spage><epage>1463</epage><pages>1454-1463</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract>The memristor device technology has created waves in the research community and led to the consideration of using the device in multiple avenues. The most likely candidate for early adoption is the nonvolatile memory due to the small cell size (increased scaling potential), increased density as compared to flash, and ability to stack these devices in a crossbar structure. This paper analyzes the feasibility of a memristor memory and introduces an adaptive read, write, and erase method that may be used to realize a more resilient memory system in the face of low yield in the nanotechnology regime. The proposed method is evaluated in simulation program with integrated circuit emphasis (SPICE) and a hand analysis model is extracted to help explain the sources of power and energy consumption. Finally, the power metrics are compared to flash memory technology, and the memristor memory is shown to have an energy per bit consumption about one-tenth that of flash when programming, comparable to flash when erasing, and about one-fourth of flash when reading.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TNANO.2011.2166805</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-125X
ispartof IEEE transactions on nanotechnology, 2011-11, Vol.10 (6), p.1454-1463
issn 1536-125X
1941-0085
language eng
recordid cdi_crossref_primary_10_1109_TNANO_2011_2166805
source IEEE Electronic Library (IEL)
subjects Adaptation models
Applied sciences
Communities
Computer memory
Density
Design. Technologies. Operation analysis. Testing
Devices
Electronic equipment and fabrication. Passive components, printed wiring boards, connectics
Electronics
Energy consumption
Exact sciences and technology
Feasibility
Flash memory (computers)
Integrated circuits
Integrated circuits by function (including memories and processors)
Magnetic and optical mass memories
Memristor
Memristors
Nanotechnology
Programming
Random access memory
Resistance
resistive random access memory (RAM)
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Storage and reproduction of information
title Self-Controlled Writing and Erasing in a Memristor Crossbar Memory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A30%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Controlled%20Writing%20and%20Erasing%20in%20a%20Memristor%20Crossbar%20Memory&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Ebong,%20I.%20E.&rft.date=2011-11-01&rft.volume=10&rft.issue=6&rft.spage=1454&rft.epage=1463&rft.pages=1454-1463&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2011.2166805&rft_dat=%3Cproquest_RIE%3E963904531%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=913722922&rft_id=info:pmid/&rft_ieee_id=6069931&rfr_iscdi=true