Moving Toward Nano-TCAD Through Multimillion-Atom Quantum-Dot Simulations Matching Experimental Data

Low-loss optical communication requires light sources at 1.5 mum wavelengths. Experiments showed, without much theoretical guidance, that InAs/GaAs quantum dots (QDs) may be tuned to such wavelengths by adjusting the In fraction in an In x Ga 1- x As strain-reducing capping layer. In this paper, sys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nanotechnology 2009-05, Vol.8 (3), p.330-344
Hauptverfasser: Usman, M., Hoon Ryu, Insoo Woo, Ebert, D.S., Klimeck, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 344
container_issue 3
container_start_page 330
container_title IEEE transactions on nanotechnology
container_volume 8
creator Usman, M.
Hoon Ryu
Insoo Woo
Ebert, D.S.
Klimeck, G.
description Low-loss optical communication requires light sources at 1.5 mum wavelengths. Experiments showed, without much theoretical guidance, that InAs/GaAs quantum dots (QDs) may be tuned to such wavelengths by adjusting the In fraction in an In x Ga 1- x As strain-reducing capping layer. In this paper, systematic multimillion-atom electronic structure calculations explain, qualitatively and quantitatively, for the first time, available experimental data. The nanoelectronic modeling NEMO 3-D simulations treat strain in a 15-million-atom system and electronic structure in a subset of ~ 9 million atoms using the experimentally given nominal geometries, and without any further parameter adjustments, the simulations match the nonlinear behavior of experimental data very closely. With the match to experimental data and the availability of internal model quantities, significant insight can be gained through mapping to reduced-order models and their relative importance. We can also demonstrate that starting from simple models has, in the past, led to the wrong conclusions. The critical new insight presented here is that the QD changes its shape. The quantitative simulation agreement with experiment, without any material or geometry parameter adjustment in a general atomistic tool, leads us to believe that the era of nanotechnology computer-aided design is approaching. NEMO 3-D will be released on nanoHUB.org, where the community can duplicate and expand on the results presented here through interactive simulations.
doi_str_mv 10.1109/TNANO.2008.2011900
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNANO_2008_2011900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4749336</ieee_id><sourcerecordid>2545577061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-747801f2fb7ca3ed55c87185d40c09bd075107f5727b77a63ccbe4bf3bd1f05f3</originalsourceid><addsrcrecordid>eNp9kUtv2zAMx41hA9Z1-wLbxRiwx8UdqUckH4OkewBNimEesJsgy3KjQrZSS97j209Zgh526IUkyB__APkvipcIF4hQf2i2y-31BQGQOSDWAI-KM6wZVrnFH-ea00WFhP94WjyL8RYAxYLLs6LbhJ9uvCmb8EtPXbnVY6ia1XJdNrspzDe7cjP75AbnvQtjtUxhKL_OekzzUK1DKr-5YfY65VksNzqZ3UHr8vfeTm6wY9K-XOuknxdPeu2jfXHK58X3j5fN6nN1df3py2p5VRlOIVWCCQnYk74VRlPbcW6kQMk7BgbqtgPBEUTPBRGtEHpBjWkta3vadtgD7-l58e6ou5_C3WxjUoOLxnqvRxvmqKTgkJ8CJJNvHyQpkzWjiBl8_yCIglPOiKQHzdf_obdhnsZ8sKqRUEkI0AyRI2SmEONke7XPr9LTH4WgDlaqf1aqg5XqZGVeenNS1tFo3096NC7ebxLkDDjUmXt15Jy19n7MBKspXdC_wsqmVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912382203</pqid></control><display><type>article</type><title>Moving Toward Nano-TCAD Through Multimillion-Atom Quantum-Dot Simulations Matching Experimental Data</title><source>IEEE Electronic Library (IEL)</source><creator>Usman, M. ; Hoon Ryu ; Insoo Woo ; Ebert, D.S. ; Klimeck, G.</creator><creatorcontrib>Usman, M. ; Hoon Ryu ; Insoo Woo ; Ebert, D.S. ; Klimeck, G.</creatorcontrib><description>Low-loss optical communication requires light sources at 1.5 mum wavelengths. Experiments showed, without much theoretical guidance, that InAs/GaAs quantum dots (QDs) may be tuned to such wavelengths by adjusting the In fraction in an In x Ga 1- x As strain-reducing capping layer. In this paper, systematic multimillion-atom electronic structure calculations explain, qualitatively and quantitatively, for the first time, available experimental data. The nanoelectronic modeling NEMO 3-D simulations treat strain in a 15-million-atom system and electronic structure in a subset of ~ 9 million atoms using the experimentally given nominal geometries, and without any further parameter adjustments, the simulations match the nonlinear behavior of experimental data very closely. With the match to experimental data and the availability of internal model quantities, significant insight can be gained through mapping to reduced-order models and their relative importance. We can also demonstrate that starting from simple models has, in the past, led to the wrong conclusions. The critical new insight presented here is that the QD changes its shape. The quantitative simulation agreement with experiment, without any material or geometry parameter adjustment in a general atomistic tool, leads us to believe that the era of nanotechnology computer-aided design is approaching. NEMO 3-D will be released on nanoHUB.org, where the community can duplicate and expand on the results presented here through interactive simulations.</description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2008.2011900</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Aspect ratio (AR) ; Atomic layer deposition ; Capacitive sensors ; Computational modeling ; Computer simulation ; Cross-disciplinary physics: materials science; rheology ; Electronic structure ; Electronics ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Gallium arsenide ; Geometry ; Light sources ; Materials science ; Mathematical models ; Molecular electronics, nanoelectronics ; Nanocomposites ; Nanomaterials ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Nanotechnology ; Optical fiber communication ; Optical sources and standards ; Optics ; Optoelectronic devices ; Physics ; Quantum dots ; quantum dots (QDs) ; Quantum mechanics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Solid modeling ; strain ; strain reducing layer ; wave function ; wavelength</subject><ispartof>IEEE transactions on nanotechnology, 2009-05, Vol.8 (3), p.330-344</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-747801f2fb7ca3ed55c87185d40c09bd075107f5727b77a63ccbe4bf3bd1f05f3</citedby><cites>FETCH-LOGICAL-c530t-747801f2fb7ca3ed55c87185d40c09bd075107f5727b77a63ccbe4bf3bd1f05f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4749336$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4749336$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21540509$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Usman, M.</creatorcontrib><creatorcontrib>Hoon Ryu</creatorcontrib><creatorcontrib>Insoo Woo</creatorcontrib><creatorcontrib>Ebert, D.S.</creatorcontrib><creatorcontrib>Klimeck, G.</creatorcontrib><title>Moving Toward Nano-TCAD Through Multimillion-Atom Quantum-Dot Simulations Matching Experimental Data</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description>Low-loss optical communication requires light sources at 1.5 mum wavelengths. Experiments showed, without much theoretical guidance, that InAs/GaAs quantum dots (QDs) may be tuned to such wavelengths by adjusting the In fraction in an In x Ga 1- x As strain-reducing capping layer. In this paper, systematic multimillion-atom electronic structure calculations explain, qualitatively and quantitatively, for the first time, available experimental data. The nanoelectronic modeling NEMO 3-D simulations treat strain in a 15-million-atom system and electronic structure in a subset of ~ 9 million atoms using the experimentally given nominal geometries, and without any further parameter adjustments, the simulations match the nonlinear behavior of experimental data very closely. With the match to experimental data and the availability of internal model quantities, significant insight can be gained through mapping to reduced-order models and their relative importance. We can also demonstrate that starting from simple models has, in the past, led to the wrong conclusions. The critical new insight presented here is that the QD changes its shape. The quantitative simulation agreement with experiment, without any material or geometry parameter adjustment in a general atomistic tool, leads us to believe that the era of nanotechnology computer-aided design is approaching. NEMO 3-D will be released on nanoHUB.org, where the community can duplicate and expand on the results presented here through interactive simulations.</description><subject>Applied sciences</subject><subject>Aspect ratio (AR)</subject><subject>Atomic layer deposition</subject><subject>Capacitive sensors</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electronic structure</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Gallium arsenide</subject><subject>Geometry</subject><subject>Light sources</subject><subject>Materials science</subject><subject>Mathematical models</subject><subject>Molecular electronics, nanoelectronics</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Optical fiber communication</subject><subject>Optical sources and standards</subject><subject>Optics</subject><subject>Optoelectronic devices</subject><subject>Physics</subject><subject>Quantum dots</subject><subject>quantum dots (QDs)</subject><subject>Quantum mechanics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Solid modeling</subject><subject>strain</subject><subject>strain reducing layer</subject><subject>wave function</subject><subject>wavelength</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kUtv2zAMx41hA9Z1-wLbxRiwx8UdqUckH4OkewBNimEesJsgy3KjQrZSS97j209Zgh526IUkyB__APkvipcIF4hQf2i2y-31BQGQOSDWAI-KM6wZVrnFH-ea00WFhP94WjyL8RYAxYLLs6LbhJ9uvCmb8EtPXbnVY6ia1XJdNrspzDe7cjP75AbnvQtjtUxhKL_OekzzUK1DKr-5YfY65VksNzqZ3UHr8vfeTm6wY9K-XOuknxdPeu2jfXHK58X3j5fN6nN1df3py2p5VRlOIVWCCQnYk74VRlPbcW6kQMk7BgbqtgPBEUTPBRGtEHpBjWkta3vadtgD7-l58e6ou5_C3WxjUoOLxnqvRxvmqKTgkJ8CJJNvHyQpkzWjiBl8_yCIglPOiKQHzdf_obdhnsZ8sKqRUEkI0AyRI2SmEONke7XPr9LTH4WgDlaqf1aqg5XqZGVeenNS1tFo3096NC7ebxLkDDjUmXt15Jy19n7MBKspXdC_wsqmVw</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Usman, M.</creator><creator>Hoon Ryu</creator><creator>Insoo Woo</creator><creator>Ebert, D.S.</creator><creator>Klimeck, G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090501</creationdate><title>Moving Toward Nano-TCAD Through Multimillion-Atom Quantum-Dot Simulations Matching Experimental Data</title><author>Usman, M. ; Hoon Ryu ; Insoo Woo ; Ebert, D.S. ; Klimeck, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-747801f2fb7ca3ed55c87185d40c09bd075107f5727b77a63ccbe4bf3bd1f05f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Aspect ratio (AR)</topic><topic>Atomic layer deposition</topic><topic>Capacitive sensors</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electronic structure</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Gallium arsenide</topic><topic>Geometry</topic><topic>Light sources</topic><topic>Materials science</topic><topic>Mathematical models</topic><topic>Molecular electronics, nanoelectronics</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Optical fiber communication</topic><topic>Optical sources and standards</topic><topic>Optics</topic><topic>Optoelectronic devices</topic><topic>Physics</topic><topic>Quantum dots</topic><topic>quantum dots (QDs)</topic><topic>Quantum mechanics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Solid modeling</topic><topic>strain</topic><topic>strain reducing layer</topic><topic>wave function</topic><topic>wavelength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Usman, M.</creatorcontrib><creatorcontrib>Hoon Ryu</creatorcontrib><creatorcontrib>Insoo Woo</creatorcontrib><creatorcontrib>Ebert, D.S.</creatorcontrib><creatorcontrib>Klimeck, G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Usman, M.</au><au>Hoon Ryu</au><au>Insoo Woo</au><au>Ebert, D.S.</au><au>Klimeck, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Moving Toward Nano-TCAD Through Multimillion-Atom Quantum-Dot Simulations Matching Experimental Data</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2009-05-01</date><risdate>2009</risdate><volume>8</volume><issue>3</issue><spage>330</spage><epage>344</epage><pages>330-344</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract>Low-loss optical communication requires light sources at 1.5 mum wavelengths. Experiments showed, without much theoretical guidance, that InAs/GaAs quantum dots (QDs) may be tuned to such wavelengths by adjusting the In fraction in an In x Ga 1- x As strain-reducing capping layer. In this paper, systematic multimillion-atom electronic structure calculations explain, qualitatively and quantitatively, for the first time, available experimental data. The nanoelectronic modeling NEMO 3-D simulations treat strain in a 15-million-atom system and electronic structure in a subset of ~ 9 million atoms using the experimentally given nominal geometries, and without any further parameter adjustments, the simulations match the nonlinear behavior of experimental data very closely. With the match to experimental data and the availability of internal model quantities, significant insight can be gained through mapping to reduced-order models and their relative importance. We can also demonstrate that starting from simple models has, in the past, led to the wrong conclusions. The critical new insight presented here is that the QD changes its shape. The quantitative simulation agreement with experiment, without any material or geometry parameter adjustment in a general atomistic tool, leads us to believe that the era of nanotechnology computer-aided design is approaching. NEMO 3-D will be released on nanoHUB.org, where the community can duplicate and expand on the results presented here through interactive simulations.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TNANO.2008.2011900</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-125X
ispartof IEEE transactions on nanotechnology, 2009-05, Vol.8 (3), p.330-344
issn 1536-125X
1941-0085
language eng
recordid cdi_crossref_primary_10_1109_TNANO_2008_2011900
source IEEE Electronic Library (IEL)
subjects Applied sciences
Aspect ratio (AR)
Atomic layer deposition
Capacitive sensors
Computational modeling
Computer simulation
Cross-disciplinary physics: materials science
rheology
Electronic structure
Electronics
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Gallium arsenide
Geometry
Light sources
Materials science
Mathematical models
Molecular electronics, nanoelectronics
Nanocomposites
Nanomaterials
Nanoscale materials and structures: fabrication and characterization
Nanostructure
Nanotechnology
Optical fiber communication
Optical sources and standards
Optics
Optoelectronic devices
Physics
Quantum dots
quantum dots (QDs)
Quantum mechanics
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Solid modeling
strain
strain reducing layer
wave function
wavelength
title Moving Toward Nano-TCAD Through Multimillion-Atom Quantum-Dot Simulations Matching Experimental Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T10%3A35%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Moving%20Toward%20Nano-TCAD%20Through%20Multimillion-Atom%20Quantum-Dot%20Simulations%20Matching%20Experimental%20Data&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Usman,%20M.&rft.date=2009-05-01&rft.volume=8&rft.issue=3&rft.spage=330&rft.epage=344&rft.pages=330-344&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2008.2011900&rft_dat=%3Cproquest_RIE%3E2545577061%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912382203&rft_id=info:pmid/&rft_ieee_id=4749336&rfr_iscdi=true