Exploring Fine-Grained Fault Tolerance for Nanotechnology Devices With the Recursive NanoBox Processor Grid

Advanced molecular nanotechnology devices are predicted to have exceedingly high transient fault rates and large numbers of inherent device defects compared to conventional CMOS devices. We describe and evaluate the Recursive NanoBox Processor Grid as an application specific, fault-tolerant, paralle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nanotechnology 2006-09, Vol.5 (5), p.575-586
Hauptverfasser: KleinOsowski, A., Pai, V.V., Rangarajan, V., Ranganath, P., KleinOsowski, K., Subramony, M., Lilja, D.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 586
container_issue 5
container_start_page 575
container_title IEEE transactions on nanotechnology
container_volume 5
creator KleinOsowski, A.
Pai, V.V.
Rangarajan, V.
Ranganath, P.
KleinOsowski, K.
Subramony, M.
Lilja, D.J.
description Advanced molecular nanotechnology devices are predicted to have exceedingly high transient fault rates and large numbers of inherent device defects compared to conventional CMOS devices. We describe and evaluate the Recursive NanoBox Processor Grid as an application specific, fault-tolerant, parallel computing system designed for fabrication with unreliable nanotechnology devices. In this study we construct hardware description language models of a NanoBox Processor cell and evaluate the effectiveness of our recursive fault masking approach in the presence of random errors. Our analysis shows that complex circuits constructed with encoded lookup tables can operate correctly despite 2% of the nodes being in error. The circuits operate partially correct with up to 4% of the nodes being in error
doi_str_mv 10.1109/TNANO.2006.880901
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNANO_2006_880901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1695958</ieee_id><sourcerecordid>2544611901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-3b60706b1f420403c869e8cfcee137785dda4206fb22b3147e11fb260ac584443</originalsourceid><addsrcrecordid>eNpdkE1LJDEQhhtxwc8fIF7CwuKpx6ruTjo5uuqMgozLMqK3kMlUO3Hbzph0i_57M44g7KkK6nmriifLjhBGiKBOZ9Oz6e2oABAjKUEBbmW7qCrMASTfTj0vRY4Ff9jJ9mJ8AsBacLmb_bt8W7U-uO6RjV1H-SSYVBZsbIa2ZzPfUjCdJdb4wKam8z3ZZedb__jOLujVWYrs3vVL1i-J_SU7hOhe6ZP87d_Yn-ATEVN2EtziIPvRmDbS4Vfdz-7Gl7Pzq_zmdnJ9fnaT25JXfV7OBdQg5thUBVRQWikUSdtYIizrWvLFwqSJaOZFMS-xqgkx9QKM5bKqqnI_O9nsXQX_MlDs9bOLltrWdOSHqKUSWCshIZE__yOf_BC69JxWWKQbUNcJwg1kg48xUKNXwT2b8K4R9Fq-_pSv1_L1Rn7K_PpabKI1bbOW6OJ3UGKBCkTijjecI6LvsVBccVl-AOiDjRU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912206077</pqid></control><display><type>article</type><title>Exploring Fine-Grained Fault Tolerance for Nanotechnology Devices With the Recursive NanoBox Processor Grid</title><source>IEEE Electronic Library (IEL)</source><creator>KleinOsowski, A. ; Pai, V.V. ; Rangarajan, V. ; Ranganath, P. ; KleinOsowski, K. ; Subramony, M. ; Lilja, D.J.</creator><creatorcontrib>KleinOsowski, A. ; Pai, V.V. ; Rangarajan, V. ; Ranganath, P. ; KleinOsowski, K. ; Subramony, M. ; Lilja, D.J.</creatorcontrib><description>Advanced molecular nanotechnology devices are predicted to have exceedingly high transient fault rates and large numbers of inherent device defects compared to conventional CMOS devices. We describe and evaluate the Recursive NanoBox Processor Grid as an application specific, fault-tolerant, parallel computing system designed for fabrication with unreliable nanotechnology devices. In this study we construct hardware description language models of a NanoBox Processor cell and evaluate the effectiveness of our recursive fault masking approach in the presence of random errors. Our analysis shows that complex circuits constructed with encoded lookup tables can operate correctly despite 2% of the nodes being in error. The circuits operate partially correct with up to 4% of the nodes being in error</description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2006.880901</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Circuit faults ; Computer architecture ; Computers, microcomputers ; Design. Technologies. Operation analysis. Testing ; Electronics ; Error correction ; Exact sciences and technology ; Fabrication ; Fault tolerance ; Fault tolerant systems ; Hardware ; Hardware design languages ; Integrated circuits ; Integrated circuits by function (including memories and processors) ; logic design ; Mathematical models ; Microprocessors ; Molecular electronics, nanoelectronics ; Nanocomposites ; Nanomaterials ; Nanoscale devices ; Nanostructure ; Nanotechnology ; Nanotechnology devices ; Parallel processing ; Recursive ; robustness ; Semiconductor device modeling ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><ispartof>IEEE transactions on nanotechnology, 2006-09, Vol.5 (5), p.575-586</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-3b60706b1f420403c869e8cfcee137785dda4206fb22b3147e11fb260ac584443</citedby><cites>FETCH-LOGICAL-c354t-3b60706b1f420403c869e8cfcee137785dda4206fb22b3147e11fb260ac584443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1695958$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1695958$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18121906$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>KleinOsowski, A.</creatorcontrib><creatorcontrib>Pai, V.V.</creatorcontrib><creatorcontrib>Rangarajan, V.</creatorcontrib><creatorcontrib>Ranganath, P.</creatorcontrib><creatorcontrib>KleinOsowski, K.</creatorcontrib><creatorcontrib>Subramony, M.</creatorcontrib><creatorcontrib>Lilja, D.J.</creatorcontrib><title>Exploring Fine-Grained Fault Tolerance for Nanotechnology Devices With the Recursive NanoBox Processor Grid</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description>Advanced molecular nanotechnology devices are predicted to have exceedingly high transient fault rates and large numbers of inherent device defects compared to conventional CMOS devices. We describe and evaluate the Recursive NanoBox Processor Grid as an application specific, fault-tolerant, parallel computing system designed for fabrication with unreliable nanotechnology devices. In this study we construct hardware description language models of a NanoBox Processor cell and evaluate the effectiveness of our recursive fault masking approach in the presence of random errors. Our analysis shows that complex circuits constructed with encoded lookup tables can operate correctly despite 2% of the nodes being in error. The circuits operate partially correct with up to 4% of the nodes being in error</description><subject>Applied sciences</subject><subject>Circuit faults</subject><subject>Computer architecture</subject><subject>Computers, microcomputers</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electronics</subject><subject>Error correction</subject><subject>Exact sciences and technology</subject><subject>Fabrication</subject><subject>Fault tolerance</subject><subject>Fault tolerant systems</subject><subject>Hardware</subject><subject>Hardware design languages</subject><subject>Integrated circuits</subject><subject>Integrated circuits by function (including memories and processors)</subject><subject>logic design</subject><subject>Mathematical models</subject><subject>Microprocessors</subject><subject>Molecular electronics, nanoelectronics</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanoscale devices</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Nanotechnology devices</subject><subject>Parallel processing</subject><subject>Recursive</subject><subject>robustness</subject><subject>Semiconductor device modeling</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LJDEQhhtxwc8fIF7CwuKpx6ruTjo5uuqMgozLMqK3kMlUO3Hbzph0i_57M44g7KkK6nmriifLjhBGiKBOZ9Oz6e2oABAjKUEBbmW7qCrMASTfTj0vRY4Ff9jJ9mJ8AsBacLmb_bt8W7U-uO6RjV1H-SSYVBZsbIa2ZzPfUjCdJdb4wKam8z3ZZedb__jOLujVWYrs3vVL1i-J_SU7hOhe6ZP87d_Yn-ATEVN2EtziIPvRmDbS4Vfdz-7Gl7Pzq_zmdnJ9fnaT25JXfV7OBdQg5thUBVRQWikUSdtYIizrWvLFwqSJaOZFMS-xqgkx9QKM5bKqqnI_O9nsXQX_MlDs9bOLltrWdOSHqKUSWCshIZE__yOf_BC69JxWWKQbUNcJwg1kg48xUKNXwT2b8K4R9Fq-_pSv1_L1Rn7K_PpabKI1bbOW6OJ3UGKBCkTijjecI6LvsVBccVl-AOiDjRU</recordid><startdate>20060901</startdate><enddate>20060901</enddate><creator>KleinOsowski, A.</creator><creator>Pai, V.V.</creator><creator>Rangarajan, V.</creator><creator>Ranganath, P.</creator><creator>KleinOsowski, K.</creator><creator>Subramony, M.</creator><creator>Lilja, D.J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20060901</creationdate><title>Exploring Fine-Grained Fault Tolerance for Nanotechnology Devices With the Recursive NanoBox Processor Grid</title><author>KleinOsowski, A. ; Pai, V.V. ; Rangarajan, V. ; Ranganath, P. ; KleinOsowski, K. ; Subramony, M. ; Lilja, D.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-3b60706b1f420403c869e8cfcee137785dda4206fb22b3147e11fb260ac584443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Circuit faults</topic><topic>Computer architecture</topic><topic>Computers, microcomputers</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electronics</topic><topic>Error correction</topic><topic>Exact sciences and technology</topic><topic>Fabrication</topic><topic>Fault tolerance</topic><topic>Fault tolerant systems</topic><topic>Hardware</topic><topic>Hardware design languages</topic><topic>Integrated circuits</topic><topic>Integrated circuits by function (including memories and processors)</topic><topic>logic design</topic><topic>Mathematical models</topic><topic>Microprocessors</topic><topic>Molecular electronics, nanoelectronics</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanoscale devices</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Nanotechnology devices</topic><topic>Parallel processing</topic><topic>Recursive</topic><topic>robustness</topic><topic>Semiconductor device modeling</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KleinOsowski, A.</creatorcontrib><creatorcontrib>Pai, V.V.</creatorcontrib><creatorcontrib>Rangarajan, V.</creatorcontrib><creatorcontrib>Ranganath, P.</creatorcontrib><creatorcontrib>KleinOsowski, K.</creatorcontrib><creatorcontrib>Subramony, M.</creatorcontrib><creatorcontrib>Lilja, D.J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KleinOsowski, A.</au><au>Pai, V.V.</au><au>Rangarajan, V.</au><au>Ranganath, P.</au><au>KleinOsowski, K.</au><au>Subramony, M.</au><au>Lilja, D.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring Fine-Grained Fault Tolerance for Nanotechnology Devices With the Recursive NanoBox Processor Grid</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2006-09-01</date><risdate>2006</risdate><volume>5</volume><issue>5</issue><spage>575</spage><epage>586</epage><pages>575-586</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract>Advanced molecular nanotechnology devices are predicted to have exceedingly high transient fault rates and large numbers of inherent device defects compared to conventional CMOS devices. We describe and evaluate the Recursive NanoBox Processor Grid as an application specific, fault-tolerant, parallel computing system designed for fabrication with unreliable nanotechnology devices. In this study we construct hardware description language models of a NanoBox Processor cell and evaluate the effectiveness of our recursive fault masking approach in the presence of random errors. Our analysis shows that complex circuits constructed with encoded lookup tables can operate correctly despite 2% of the nodes being in error. The circuits operate partially correct with up to 4% of the nodes being in error</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TNANO.2006.880901</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-125X
ispartof IEEE transactions on nanotechnology, 2006-09, Vol.5 (5), p.575-586
issn 1536-125X
1941-0085
language eng
recordid cdi_crossref_primary_10_1109_TNANO_2006_880901
source IEEE Electronic Library (IEL)
subjects Applied sciences
Circuit faults
Computer architecture
Computers, microcomputers
Design. Technologies. Operation analysis. Testing
Electronics
Error correction
Exact sciences and technology
Fabrication
Fault tolerance
Fault tolerant systems
Hardware
Hardware design languages
Integrated circuits
Integrated circuits by function (including memories and processors)
logic design
Mathematical models
Microprocessors
Molecular electronics, nanoelectronics
Nanocomposites
Nanomaterials
Nanoscale devices
Nanostructure
Nanotechnology
Nanotechnology devices
Parallel processing
Recursive
robustness
Semiconductor device modeling
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
title Exploring Fine-Grained Fault Tolerance for Nanotechnology Devices With the Recursive NanoBox Processor Grid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A29%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20Fine-Grained%20Fault%20Tolerance%20for%20Nanotechnology%20Devices%20With%20the%20Recursive%20NanoBox%20Processor%20Grid&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=KleinOsowski,%20A.&rft.date=2006-09-01&rft.volume=5&rft.issue=5&rft.spage=575&rft.epage=586&rft.pages=575-586&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2006.880901&rft_dat=%3Cproquest_RIE%3E2544611901%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912206077&rft_id=info:pmid/&rft_ieee_id=1695958&rfr_iscdi=true