Exploring Fine-Grained Fault Tolerance for Nanotechnology Devices With the Recursive NanoBox Processor Grid
Advanced molecular nanotechnology devices are predicted to have exceedingly high transient fault rates and large numbers of inherent device defects compared to conventional CMOS devices. We describe and evaluate the Recursive NanoBox Processor Grid as an application specific, fault-tolerant, paralle...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nanotechnology 2006-09, Vol.5 (5), p.575-586 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 586 |
---|---|
container_issue | 5 |
container_start_page | 575 |
container_title | IEEE transactions on nanotechnology |
container_volume | 5 |
creator | KleinOsowski, A. Pai, V.V. Rangarajan, V. Ranganath, P. KleinOsowski, K. Subramony, M. Lilja, D.J. |
description | Advanced molecular nanotechnology devices are predicted to have exceedingly high transient fault rates and large numbers of inherent device defects compared to conventional CMOS devices. We describe and evaluate the Recursive NanoBox Processor Grid as an application specific, fault-tolerant, parallel computing system designed for fabrication with unreliable nanotechnology devices. In this study we construct hardware description language models of a NanoBox Processor cell and evaluate the effectiveness of our recursive fault masking approach in the presence of random errors. Our analysis shows that complex circuits constructed with encoded lookup tables can operate correctly despite 2% of the nodes being in error. The circuits operate partially correct with up to 4% of the nodes being in error |
doi_str_mv | 10.1109/TNANO.2006.880901 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNANO_2006_880901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1695958</ieee_id><sourcerecordid>2544611901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-3b60706b1f420403c869e8cfcee137785dda4206fb22b3147e11fb260ac584443</originalsourceid><addsrcrecordid>eNpdkE1LJDEQhhtxwc8fIF7CwuKpx6ruTjo5uuqMgozLMqK3kMlUO3Hbzph0i_57M44g7KkK6nmriifLjhBGiKBOZ9Oz6e2oABAjKUEBbmW7qCrMASTfTj0vRY4Ff9jJ9mJ8AsBacLmb_bt8W7U-uO6RjV1H-SSYVBZsbIa2ZzPfUjCdJdb4wKam8z3ZZedb__jOLujVWYrs3vVL1i-J_SU7hOhe6ZP87d_Yn-ATEVN2EtziIPvRmDbS4Vfdz-7Gl7Pzq_zmdnJ9fnaT25JXfV7OBdQg5thUBVRQWikUSdtYIizrWvLFwqSJaOZFMS-xqgkx9QKM5bKqqnI_O9nsXQX_MlDs9bOLltrWdOSHqKUSWCshIZE__yOf_BC69JxWWKQbUNcJwg1kg48xUKNXwT2b8K4R9Fq-_pSv1_L1Rn7K_PpabKI1bbOW6OJ3UGKBCkTijjecI6LvsVBccVl-AOiDjRU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912206077</pqid></control><display><type>article</type><title>Exploring Fine-Grained Fault Tolerance for Nanotechnology Devices With the Recursive NanoBox Processor Grid</title><source>IEEE Electronic Library (IEL)</source><creator>KleinOsowski, A. ; Pai, V.V. ; Rangarajan, V. ; Ranganath, P. ; KleinOsowski, K. ; Subramony, M. ; Lilja, D.J.</creator><creatorcontrib>KleinOsowski, A. ; Pai, V.V. ; Rangarajan, V. ; Ranganath, P. ; KleinOsowski, K. ; Subramony, M. ; Lilja, D.J.</creatorcontrib><description>Advanced molecular nanotechnology devices are predicted to have exceedingly high transient fault rates and large numbers of inherent device defects compared to conventional CMOS devices. We describe and evaluate the Recursive NanoBox Processor Grid as an application specific, fault-tolerant, parallel computing system designed for fabrication with unreliable nanotechnology devices. In this study we construct hardware description language models of a NanoBox Processor cell and evaluate the effectiveness of our recursive fault masking approach in the presence of random errors. Our analysis shows that complex circuits constructed with encoded lookup tables can operate correctly despite 2% of the nodes being in error. The circuits operate partially correct with up to 4% of the nodes being in error</description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2006.880901</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Circuit faults ; Computer architecture ; Computers, microcomputers ; Design. Technologies. Operation analysis. Testing ; Electronics ; Error correction ; Exact sciences and technology ; Fabrication ; Fault tolerance ; Fault tolerant systems ; Hardware ; Hardware design languages ; Integrated circuits ; Integrated circuits by function (including memories and processors) ; logic design ; Mathematical models ; Microprocessors ; Molecular electronics, nanoelectronics ; Nanocomposites ; Nanomaterials ; Nanoscale devices ; Nanostructure ; Nanotechnology ; Nanotechnology devices ; Parallel processing ; Recursive ; robustness ; Semiconductor device modeling ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><ispartof>IEEE transactions on nanotechnology, 2006-09, Vol.5 (5), p.575-586</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-3b60706b1f420403c869e8cfcee137785dda4206fb22b3147e11fb260ac584443</citedby><cites>FETCH-LOGICAL-c354t-3b60706b1f420403c869e8cfcee137785dda4206fb22b3147e11fb260ac584443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1695958$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1695958$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18121906$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>KleinOsowski, A.</creatorcontrib><creatorcontrib>Pai, V.V.</creatorcontrib><creatorcontrib>Rangarajan, V.</creatorcontrib><creatorcontrib>Ranganath, P.</creatorcontrib><creatorcontrib>KleinOsowski, K.</creatorcontrib><creatorcontrib>Subramony, M.</creatorcontrib><creatorcontrib>Lilja, D.J.</creatorcontrib><title>Exploring Fine-Grained Fault Tolerance for Nanotechnology Devices With the Recursive NanoBox Processor Grid</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description>Advanced molecular nanotechnology devices are predicted to have exceedingly high transient fault rates and large numbers of inherent device defects compared to conventional CMOS devices. We describe and evaluate the Recursive NanoBox Processor Grid as an application specific, fault-tolerant, parallel computing system designed for fabrication with unreliable nanotechnology devices. In this study we construct hardware description language models of a NanoBox Processor cell and evaluate the effectiveness of our recursive fault masking approach in the presence of random errors. Our analysis shows that complex circuits constructed with encoded lookup tables can operate correctly despite 2% of the nodes being in error. The circuits operate partially correct with up to 4% of the nodes being in error</description><subject>Applied sciences</subject><subject>Circuit faults</subject><subject>Computer architecture</subject><subject>Computers, microcomputers</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electronics</subject><subject>Error correction</subject><subject>Exact sciences and technology</subject><subject>Fabrication</subject><subject>Fault tolerance</subject><subject>Fault tolerant systems</subject><subject>Hardware</subject><subject>Hardware design languages</subject><subject>Integrated circuits</subject><subject>Integrated circuits by function (including memories and processors)</subject><subject>logic design</subject><subject>Mathematical models</subject><subject>Microprocessors</subject><subject>Molecular electronics, nanoelectronics</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanoscale devices</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Nanotechnology devices</subject><subject>Parallel processing</subject><subject>Recursive</subject><subject>robustness</subject><subject>Semiconductor device modeling</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LJDEQhhtxwc8fIF7CwuKpx6ruTjo5uuqMgozLMqK3kMlUO3Hbzph0i_57M44g7KkK6nmriifLjhBGiKBOZ9Oz6e2oABAjKUEBbmW7qCrMASTfTj0vRY4Ff9jJ9mJ8AsBacLmb_bt8W7U-uO6RjV1H-SSYVBZsbIa2ZzPfUjCdJdb4wKam8z3ZZedb__jOLujVWYrs3vVL1i-J_SU7hOhe6ZP87d_Yn-ATEVN2EtziIPvRmDbS4Vfdz-7Gl7Pzq_zmdnJ9fnaT25JXfV7OBdQg5thUBVRQWikUSdtYIizrWvLFwqSJaOZFMS-xqgkx9QKM5bKqqnI_O9nsXQX_MlDs9bOLltrWdOSHqKUSWCshIZE__yOf_BC69JxWWKQbUNcJwg1kg48xUKNXwT2b8K4R9Fq-_pSv1_L1Rn7K_PpabKI1bbOW6OJ3UGKBCkTijjecI6LvsVBccVl-AOiDjRU</recordid><startdate>20060901</startdate><enddate>20060901</enddate><creator>KleinOsowski, A.</creator><creator>Pai, V.V.</creator><creator>Rangarajan, V.</creator><creator>Ranganath, P.</creator><creator>KleinOsowski, K.</creator><creator>Subramony, M.</creator><creator>Lilja, D.J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20060901</creationdate><title>Exploring Fine-Grained Fault Tolerance for Nanotechnology Devices With the Recursive NanoBox Processor Grid</title><author>KleinOsowski, A. ; Pai, V.V. ; Rangarajan, V. ; Ranganath, P. ; KleinOsowski, K. ; Subramony, M. ; Lilja, D.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-3b60706b1f420403c869e8cfcee137785dda4206fb22b3147e11fb260ac584443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Circuit faults</topic><topic>Computer architecture</topic><topic>Computers, microcomputers</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electronics</topic><topic>Error correction</topic><topic>Exact sciences and technology</topic><topic>Fabrication</topic><topic>Fault tolerance</topic><topic>Fault tolerant systems</topic><topic>Hardware</topic><topic>Hardware design languages</topic><topic>Integrated circuits</topic><topic>Integrated circuits by function (including memories and processors)</topic><topic>logic design</topic><topic>Mathematical models</topic><topic>Microprocessors</topic><topic>Molecular electronics, nanoelectronics</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanoscale devices</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Nanotechnology devices</topic><topic>Parallel processing</topic><topic>Recursive</topic><topic>robustness</topic><topic>Semiconductor device modeling</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KleinOsowski, A.</creatorcontrib><creatorcontrib>Pai, V.V.</creatorcontrib><creatorcontrib>Rangarajan, V.</creatorcontrib><creatorcontrib>Ranganath, P.</creatorcontrib><creatorcontrib>KleinOsowski, K.</creatorcontrib><creatorcontrib>Subramony, M.</creatorcontrib><creatorcontrib>Lilja, D.J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KleinOsowski, A.</au><au>Pai, V.V.</au><au>Rangarajan, V.</au><au>Ranganath, P.</au><au>KleinOsowski, K.</au><au>Subramony, M.</au><au>Lilja, D.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring Fine-Grained Fault Tolerance for Nanotechnology Devices With the Recursive NanoBox Processor Grid</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2006-09-01</date><risdate>2006</risdate><volume>5</volume><issue>5</issue><spage>575</spage><epage>586</epage><pages>575-586</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract>Advanced molecular nanotechnology devices are predicted to have exceedingly high transient fault rates and large numbers of inherent device defects compared to conventional CMOS devices. We describe and evaluate the Recursive NanoBox Processor Grid as an application specific, fault-tolerant, parallel computing system designed for fabrication with unreliable nanotechnology devices. In this study we construct hardware description language models of a NanoBox Processor cell and evaluate the effectiveness of our recursive fault masking approach in the presence of random errors. Our analysis shows that complex circuits constructed with encoded lookup tables can operate correctly despite 2% of the nodes being in error. The circuits operate partially correct with up to 4% of the nodes being in error</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TNANO.2006.880901</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-125X |
ispartof | IEEE transactions on nanotechnology, 2006-09, Vol.5 (5), p.575-586 |
issn | 1536-125X 1941-0085 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TNANO_2006_880901 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Circuit faults Computer architecture Computers, microcomputers Design. Technologies. Operation analysis. Testing Electronics Error correction Exact sciences and technology Fabrication Fault tolerance Fault tolerant systems Hardware Hardware design languages Integrated circuits Integrated circuits by function (including memories and processors) logic design Mathematical models Microprocessors Molecular electronics, nanoelectronics Nanocomposites Nanomaterials Nanoscale devices Nanostructure Nanotechnology Nanotechnology devices Parallel processing Recursive robustness Semiconductor device modeling Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices |
title | Exploring Fine-Grained Fault Tolerance for Nanotechnology Devices With the Recursive NanoBox Processor Grid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A29%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20Fine-Grained%20Fault%20Tolerance%20for%20Nanotechnology%20Devices%20With%20the%20Recursive%20NanoBox%20Processor%20Grid&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=KleinOsowski,%20A.&rft.date=2006-09-01&rft.volume=5&rft.issue=5&rft.spage=575&rft.epage=586&rft.pages=575-586&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2006.880901&rft_dat=%3Cproquest_RIE%3E2544611901%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912206077&rft_id=info:pmid/&rft_ieee_id=1695958&rfr_iscdi=true |