Enhancing Sensing Depth and Measurement Sensitivity of Microwave Tissue Thermometry Using Near-Field Active Array Probe
Microwave radiometer operating above 2.5 GHz is less susceptible to electromagnetic interference (EMI) from wireless communication devices but has limited sensing depth due to high-tissue attenuation properties. We overcome this limitation using a near-field active antenna array probe and demonstrat...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on microwave theory and techniques 2024-05, Vol.72 (5), p.3200-3209 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3209 |
---|---|
container_issue | 5 |
container_start_page | 3200 |
container_title | IEEE transactions on microwave theory and techniques |
container_volume | 72 |
creator | Issac, Jeslin P. Arunachalam, Kavitha |
description | Microwave radiometer operating above 2.5 GHz is less susceptible to electromagnetic interference (EMI) from wireless communication devices but has limited sensing depth due to high-tissue attenuation properties. We overcome this limitation using a near-field active antenna array probe and demonstrate its performance using a 2.9-GHz switch-circulator Dicke radiometer. The near-field probe consists of 2 × 2 arrays of receive antennas with high-gain low-noise amplifiers (LNAs) and a power combiner integrated into a multilayer printed circuit board (PCB). The probe parameters and array configuration were finetuned for return loss > 30 dB, 200-MHz bandwidth, and 40-mm sensing depth at 2.9 GHz. The performance of passive and active probe prototypes was assessed using hot source of 12-16-mm diameters immersed at varying depths in 37 ^{\circ }\text{C} tissue phantom and maintained at a differential temperature of 1 ^{\circ }\text{C} - 5 ^{\circ }\text{C} above 37 ^{\circ }\text{C} . The measurement resolution of the active array probe is 0.18 °C compared to 0.52 °C and 0.22 °C observed for the passive and single active probes, respectively. A 14-mm hot source with 3 °C differential temperature at 45-mm depth that was invisible to the passive and single active probes was visible to the active array probe. Radiometer measurements demonstrate enhanced sensing depth and measurement sensitivity at 2.9 GHz for the near-field active array probe. |
doi_str_mv | 10.1109/TMTT.2023.3324367 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMTT_2023_3324367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10294306</ieee_id><sourcerecordid>3052182039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-b05d6814b5a3ffd1e9994e492a4b98c38cdb77f494940a214008ad84b5270903</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRsFY_gOBhwXPq7J8ku8dSWxVaFYznsEkmNqVJ6m7S0m_v1niQOTyGeW-G-RFyy2DCGOiHZJUkEw5cTITgUkTxGRmxMIwDHcVwTkYATAVaKrgkV85tfCtDUCNymDdr0-RV80U_sHEnfcRdt6amKegKjest1th0w7Sr9lV3pG1JV1Vu24PZI00q53ova7R1W2Nnj_Tzd88rGhssKtwWdJr7JNKpteZI322b4TW5KM3W4c2fjkmymCez52D59vQymy6DnMuoCzIIi0gxmYVGlGXBUGstUWpuZKZVLlReZHFcSu0LDGcSQJlCeT-PQYMYk_th7c623z26Lt20vW38xVRAyJniILR3scHlf3LOYpnubFUbe0wZpCe86QlvesKb_uH1mbshUyHiPz_XUkAkfgAjT3cn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3052182039</pqid></control><display><type>article</type><title>Enhancing Sensing Depth and Measurement Sensitivity of Microwave Tissue Thermometry Using Near-Field Active Array Probe</title><source>IEEE Electronic Library (IEL)</source><creator>Issac, Jeslin P. ; Arunachalam, Kavitha</creator><creatorcontrib>Issac, Jeslin P. ; Arunachalam, Kavitha</creatorcontrib><description><![CDATA[Microwave radiometer operating above 2.5 GHz is less susceptible to electromagnetic interference (EMI) from wireless communication devices but has limited sensing depth due to high-tissue attenuation properties. We overcome this limitation using a near-field active antenna array probe and demonstrate its performance using a 2.9-GHz switch-circulator Dicke radiometer. The near-field probe consists of 2 × 2 arrays of receive antennas with high-gain low-noise amplifiers (LNAs) and a power combiner integrated into a multilayer printed circuit board (PCB). The probe parameters and array configuration were finetuned for return loss <inline-formula> <tex-math notation="LaTeX">> </tex-math></inline-formula>30 dB, 200-MHz bandwidth, and 40-mm sensing depth at 2.9 GHz. The performance of passive and active probe prototypes was assessed using hot source of 12-16-mm diameters immersed at varying depths in <inline-formula> <tex-math notation="LaTeX">37 ^{\circ }\text{C} </tex-math></inline-formula> tissue phantom and maintained at a differential temperature of <inline-formula> <tex-math notation="LaTeX">1 ^{\circ }\text{C} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">5 ^{\circ }\text{C} </tex-math></inline-formula> above <inline-formula> <tex-math notation="LaTeX">37 ^{\circ }\text{C} </tex-math></inline-formula>. The measurement resolution of the active array probe is 0.18 °C compared to 0.52 °C and 0.22 °C observed for the passive and single active probes, respectively. A 14-mm hot source with 3 °C differential temperature at 45-mm depth that was invisible to the passive and single active probes was visible to the active array probe. Radiometer measurements demonstrate enhanced sensing depth and measurement sensitivity at 2.9 GHz for the near-field active array probe.]]></description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2023.3324367</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active antenna ; active array ; Amplification ; Antenna arrays ; Antennas ; body temperature ; Circuit boards ; Diameters ; Dicke radiometers ; Electromagnetic interference ; High gain ; low-noise amplifier (LNA) ; microwave ; Microwave amplifiers ; Microwave measurement ; Microwave radiometers ; Microwave radiometry ; Multilayers ; Near fields ; near-field probe ; Noise measurement ; Power combiners ; Printed circuits ; Probes ; Radiometers ; radiometry ; Sensitivity ; Sensors ; Temperature measurement ; Wireless communications</subject><ispartof>IEEE transactions on microwave theory and techniques, 2024-05, Vol.72 (5), p.3200-3209</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-b05d6814b5a3ffd1e9994e492a4b98c38cdb77f494940a214008ad84b5270903</cites><orcidid>0000-0002-0973-9253 ; 0000-0002-9532-5259</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10294306$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10294306$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Issac, Jeslin P.</creatorcontrib><creatorcontrib>Arunachalam, Kavitha</creatorcontrib><title>Enhancing Sensing Depth and Measurement Sensitivity of Microwave Tissue Thermometry Using Near-Field Active Array Probe</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description><![CDATA[Microwave radiometer operating above 2.5 GHz is less susceptible to electromagnetic interference (EMI) from wireless communication devices but has limited sensing depth due to high-tissue attenuation properties. We overcome this limitation using a near-field active antenna array probe and demonstrate its performance using a 2.9-GHz switch-circulator Dicke radiometer. The near-field probe consists of 2 × 2 arrays of receive antennas with high-gain low-noise amplifiers (LNAs) and a power combiner integrated into a multilayer printed circuit board (PCB). The probe parameters and array configuration were finetuned for return loss <inline-formula> <tex-math notation="LaTeX">> </tex-math></inline-formula>30 dB, 200-MHz bandwidth, and 40-mm sensing depth at 2.9 GHz. The performance of passive and active probe prototypes was assessed using hot source of 12-16-mm diameters immersed at varying depths in <inline-formula> <tex-math notation="LaTeX">37 ^{\circ }\text{C} </tex-math></inline-formula> tissue phantom and maintained at a differential temperature of <inline-formula> <tex-math notation="LaTeX">1 ^{\circ }\text{C} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">5 ^{\circ }\text{C} </tex-math></inline-formula> above <inline-formula> <tex-math notation="LaTeX">37 ^{\circ }\text{C} </tex-math></inline-formula>. The measurement resolution of the active array probe is 0.18 °C compared to 0.52 °C and 0.22 °C observed for the passive and single active probes, respectively. A 14-mm hot source with 3 °C differential temperature at 45-mm depth that was invisible to the passive and single active probes was visible to the active array probe. Radiometer measurements demonstrate enhanced sensing depth and measurement sensitivity at 2.9 GHz for the near-field active array probe.]]></description><subject>Active antenna</subject><subject>active array</subject><subject>Amplification</subject><subject>Antenna arrays</subject><subject>Antennas</subject><subject>body temperature</subject><subject>Circuit boards</subject><subject>Diameters</subject><subject>Dicke radiometers</subject><subject>Electromagnetic interference</subject><subject>High gain</subject><subject>low-noise amplifier (LNA)</subject><subject>microwave</subject><subject>Microwave amplifiers</subject><subject>Microwave measurement</subject><subject>Microwave radiometers</subject><subject>Microwave radiometry</subject><subject>Multilayers</subject><subject>Near fields</subject><subject>near-field probe</subject><subject>Noise measurement</subject><subject>Power combiners</subject><subject>Printed circuits</subject><subject>Probes</subject><subject>Radiometers</subject><subject>radiometry</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Temperature measurement</subject><subject>Wireless communications</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9Lw0AQxRdRsFY_gOBhwXPq7J8ku8dSWxVaFYznsEkmNqVJ6m7S0m_v1niQOTyGeW-G-RFyy2DCGOiHZJUkEw5cTITgUkTxGRmxMIwDHcVwTkYATAVaKrgkV85tfCtDUCNymDdr0-RV80U_sHEnfcRdt6amKegKjest1th0w7Sr9lV3pG1JV1Vu24PZI00q53ova7R1W2Nnj_Tzd88rGhssKtwWdJr7JNKpteZI322b4TW5KM3W4c2fjkmymCez52D59vQymy6DnMuoCzIIi0gxmYVGlGXBUGstUWpuZKZVLlReZHFcSu0LDGcSQJlCeT-PQYMYk_th7c623z26Lt20vW38xVRAyJniILR3scHlf3LOYpnubFUbe0wZpCe86QlvesKb_uH1mbshUyHiPz_XUkAkfgAjT3cn</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Issac, Jeslin P.</creator><creator>Arunachalam, Kavitha</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0973-9253</orcidid><orcidid>https://orcid.org/0000-0002-9532-5259</orcidid></search><sort><creationdate>20240501</creationdate><title>Enhancing Sensing Depth and Measurement Sensitivity of Microwave Tissue Thermometry Using Near-Field Active Array Probe</title><author>Issac, Jeslin P. ; Arunachalam, Kavitha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-b05d6814b5a3ffd1e9994e492a4b98c38cdb77f494940a214008ad84b5270903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Active antenna</topic><topic>active array</topic><topic>Amplification</topic><topic>Antenna arrays</topic><topic>Antennas</topic><topic>body temperature</topic><topic>Circuit boards</topic><topic>Diameters</topic><topic>Dicke radiometers</topic><topic>Electromagnetic interference</topic><topic>High gain</topic><topic>low-noise amplifier (LNA)</topic><topic>microwave</topic><topic>Microwave amplifiers</topic><topic>Microwave measurement</topic><topic>Microwave radiometers</topic><topic>Microwave radiometry</topic><topic>Multilayers</topic><topic>Near fields</topic><topic>near-field probe</topic><topic>Noise measurement</topic><topic>Power combiners</topic><topic>Printed circuits</topic><topic>Probes</topic><topic>Radiometers</topic><topic>radiometry</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Temperature measurement</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Issac, Jeslin P.</creatorcontrib><creatorcontrib>Arunachalam, Kavitha</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Issac, Jeslin P.</au><au>Arunachalam, Kavitha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Sensing Depth and Measurement Sensitivity of Microwave Tissue Thermometry Using Near-Field Active Array Probe</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>72</volume><issue>5</issue><spage>3200</spage><epage>3209</epage><pages>3200-3209</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract><![CDATA[Microwave radiometer operating above 2.5 GHz is less susceptible to electromagnetic interference (EMI) from wireless communication devices but has limited sensing depth due to high-tissue attenuation properties. We overcome this limitation using a near-field active antenna array probe and demonstrate its performance using a 2.9-GHz switch-circulator Dicke radiometer. The near-field probe consists of 2 × 2 arrays of receive antennas with high-gain low-noise amplifiers (LNAs) and a power combiner integrated into a multilayer printed circuit board (PCB). The probe parameters and array configuration were finetuned for return loss <inline-formula> <tex-math notation="LaTeX">> </tex-math></inline-formula>30 dB, 200-MHz bandwidth, and 40-mm sensing depth at 2.9 GHz. The performance of passive and active probe prototypes was assessed using hot source of 12-16-mm diameters immersed at varying depths in <inline-formula> <tex-math notation="LaTeX">37 ^{\circ }\text{C} </tex-math></inline-formula> tissue phantom and maintained at a differential temperature of <inline-formula> <tex-math notation="LaTeX">1 ^{\circ }\text{C} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">5 ^{\circ }\text{C} </tex-math></inline-formula> above <inline-formula> <tex-math notation="LaTeX">37 ^{\circ }\text{C} </tex-math></inline-formula>. The measurement resolution of the active array probe is 0.18 °C compared to 0.52 °C and 0.22 °C observed for the passive and single active probes, respectively. A 14-mm hot source with 3 °C differential temperature at 45-mm depth that was invisible to the passive and single active probes was visible to the active array probe. Radiometer measurements demonstrate enhanced sensing depth and measurement sensitivity at 2.9 GHz for the near-field active array probe.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMTT.2023.3324367</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0973-9253</orcidid><orcidid>https://orcid.org/0000-0002-9532-5259</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9480 |
ispartof | IEEE transactions on microwave theory and techniques, 2024-05, Vol.72 (5), p.3200-3209 |
issn | 0018-9480 1557-9670 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMTT_2023_3324367 |
source | IEEE Electronic Library (IEL) |
subjects | Active antenna active array Amplification Antenna arrays Antennas body temperature Circuit boards Diameters Dicke radiometers Electromagnetic interference High gain low-noise amplifier (LNA) microwave Microwave amplifiers Microwave measurement Microwave radiometers Microwave radiometry Multilayers Near fields near-field probe Noise measurement Power combiners Printed circuits Probes Radiometers radiometry Sensitivity Sensors Temperature measurement Wireless communications |
title | Enhancing Sensing Depth and Measurement Sensitivity of Microwave Tissue Thermometry Using Near-Field Active Array Probe |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A26%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Sensing%20Depth%20and%20Measurement%20Sensitivity%20of%20Microwave%20Tissue%20Thermometry%20Using%20Near-Field%20Active%20Array%20Probe&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Issac,%20Jeslin%20P.&rft.date=2024-05-01&rft.volume=72&rft.issue=5&rft.spage=3200&rft.epage=3209&rft.pages=3200-3209&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2023.3324367&rft_dat=%3Cproquest_RIE%3E3052182039%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3052182039&rft_id=info:pmid/&rft_ieee_id=10294306&rfr_iscdi=true |