Metasurface Aperture Design for Far-Field Computational Microwave Imaging Beyond Rayleigh Diffraction Limitations
Improving the resolution of metasurface apertures (MAs)-based computational microwave imaging (CMI) is of great significance for its practical application. Existing MAs-based CMI (MAs-CMI) has limited resolution due to the limited size of MAs, the so-called Rayleigh diffraction limit (RDL), and must...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on microwave theory and techniques 2024-01, Vol.72 (1), p.1-19 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | IEEE transactions on microwave theory and techniques |
container_volume | 72 |
creator | Fu, Haosheng Dai, Fengzhou Hong, Ling |
description | Improving the resolution of metasurface apertures (MAs)-based computational microwave imaging (CMI) is of great significance for its practical application. Existing MAs-based CMI (MAs-CMI) has limited resolution due to the limited size of MAs, the so-called Rayleigh diffraction limit (RDL), and must rely on complex back-end algorithms to achieve far-field super-resolution imaging. In this article, a single-frequency (10 GHz) single-sensor double-layer transmitarray (DTA) is designed to improve the resolution of MAs-CMI from the hardware aspect, which consists of a horn as feed, a layer of passive MA (PMA), and a layer of dynamic MA (DMA). By carefully designing the structure of the DTA, a variety of far-field random radiation patterns beyond RDL can be obtained, and the imaging resolution of the MA-CMI can be effectively improved. Simulation and measurement results show that the resolution of the far-field radiation patterns of the proposed DTA is at least 1.56 times that of RDL at the same aperture. Finally, an imaging experiment based on a manufactured DTA is performed to further demonstrate its far-field super-resolution characteristic for CMI. This is the first time that the far-field super-resolution TA based on MAs for CMI is reported. |
doi_str_mv | 10.1109/TMTT.2023.3291408 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMTT_2023_3291408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10178101</ieee_id><sourcerecordid>2913515450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-eed550a4ee43444e81116f6ee90c3f8713b77ccab67af0e4420b469b4e185e003</originalsourceid><addsrcrecordid>eNpNkN9LwzAQx4MoOKd_gOBDwOfOpEnb9HFOp4MNQepzSLtLzeivJa2y_96U7sGXOw4-3-Pug9A9JQtKSfqU7bJsEZKQLViYUk7EBZrRKEqCNE7IJZoRQkWQckGu0Y1zBz_yiIgZOu6gV26wWhWAlx3YfrCAX8CZssG6tXitbLA2UO3xqq27oVe9aRtV4Z0pbPurfgBvalWapsTPcGqbPf5UpwpM-Y1fjNZWFSOPt6Y2U9TdoiutKgd35z5HX-vXbPUebD_eNqvlNijClPcBwD6KiOIAnHHOQVBKYx0DpKRgWiSU5UlSFCqPE6UJcB6SnMdpzoGKCAhhc_Q47e1sexzA9fLQDtaf7qQ3xCIaeQOeohPlv3HOgpadNbWyJ0mJHM3K0awczcqzWZ95mDIGAP7xNBG-sD_wCnYt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2913515450</pqid></control><display><type>article</type><title>Metasurface Aperture Design for Far-Field Computational Microwave Imaging Beyond Rayleigh Diffraction Limitations</title><source>IEEE Electronic Library (IEL)</source><creator>Fu, Haosheng ; Dai, Fengzhou ; Hong, Ling</creator><creatorcontrib>Fu, Haosheng ; Dai, Fengzhou ; Hong, Ling</creatorcontrib><description>Improving the resolution of metasurface apertures (MAs)-based computational microwave imaging (CMI) is of great significance for its practical application. Existing MAs-based CMI (MAs-CMI) has limited resolution due to the limited size of MAs, the so-called Rayleigh diffraction limit (RDL), and must rely on complex back-end algorithms to achieve far-field super-resolution imaging. In this article, a single-frequency (10 GHz) single-sensor double-layer transmitarray (DTA) is designed to improve the resolution of MAs-CMI from the hardware aspect, which consists of a horn as feed, a layer of passive MA (PMA), and a layer of dynamic MA (DMA). By carefully designing the structure of the DTA, a variety of far-field random radiation patterns beyond RDL can be obtained, and the imaging resolution of the MA-CMI can be effectively improved. Simulation and measurement results show that the resolution of the far-field radiation patterns of the proposed DTA is at least 1.56 times that of RDL at the same aperture. Finally, an imaging experiment based on a manufactured DTA is performed to further demonstrate its far-field super-resolution characteristic for CMI. This is the first time that the far-field super-resolution TA based on MAs for CMI is reported.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2023.3291408</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Antenna radiation patterns ; Aperture antennas ; Apertures ; Computational microwave imaging (CMI) ; Differential thermal analysis ; Diffraction ; Far fields ; Image resolution ; Imaging ; metasurface aperture (MA) ; Metasurfaces ; Microwave imaging ; Radiation ; super-resolution ; superoscillatory ; Superresolution ; transmitarray (TA)</subject><ispartof>IEEE transactions on microwave theory and techniques, 2024-01, Vol.72 (1), p.1-19</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-eed550a4ee43444e81116f6ee90c3f8713b77ccab67af0e4420b469b4e185e003</citedby><cites>FETCH-LOGICAL-c294t-eed550a4ee43444e81116f6ee90c3f8713b77ccab67af0e4420b469b4e185e003</cites><orcidid>0000-0003-2166-2516 ; 0000-0002-8885-8807 ; 0000-0002-6710-4264</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10178101$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10178101$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fu, Haosheng</creatorcontrib><creatorcontrib>Dai, Fengzhou</creatorcontrib><creatorcontrib>Hong, Ling</creatorcontrib><title>Metasurface Aperture Design for Far-Field Computational Microwave Imaging Beyond Rayleigh Diffraction Limitations</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>Improving the resolution of metasurface apertures (MAs)-based computational microwave imaging (CMI) is of great significance for its practical application. Existing MAs-based CMI (MAs-CMI) has limited resolution due to the limited size of MAs, the so-called Rayleigh diffraction limit (RDL), and must rely on complex back-end algorithms to achieve far-field super-resolution imaging. In this article, a single-frequency (10 GHz) single-sensor double-layer transmitarray (DTA) is designed to improve the resolution of MAs-CMI from the hardware aspect, which consists of a horn as feed, a layer of passive MA (PMA), and a layer of dynamic MA (DMA). By carefully designing the structure of the DTA, a variety of far-field random radiation patterns beyond RDL can be obtained, and the imaging resolution of the MA-CMI can be effectively improved. Simulation and measurement results show that the resolution of the far-field radiation patterns of the proposed DTA is at least 1.56 times that of RDL at the same aperture. Finally, an imaging experiment based on a manufactured DTA is performed to further demonstrate its far-field super-resolution characteristic for CMI. This is the first time that the far-field super-resolution TA based on MAs for CMI is reported.</description><subject>Algorithms</subject><subject>Antenna radiation patterns</subject><subject>Aperture antennas</subject><subject>Apertures</subject><subject>Computational microwave imaging (CMI)</subject><subject>Differential thermal analysis</subject><subject>Diffraction</subject><subject>Far fields</subject><subject>Image resolution</subject><subject>Imaging</subject><subject>metasurface aperture (MA)</subject><subject>Metasurfaces</subject><subject>Microwave imaging</subject><subject>Radiation</subject><subject>super-resolution</subject><subject>superoscillatory</subject><subject>Superresolution</subject><subject>transmitarray (TA)</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkN9LwzAQx4MoOKd_gOBDwOfOpEnb9HFOp4MNQepzSLtLzeivJa2y_96U7sGXOw4-3-Pug9A9JQtKSfqU7bJsEZKQLViYUk7EBZrRKEqCNE7IJZoRQkWQckGu0Y1zBz_yiIgZOu6gV26wWhWAlx3YfrCAX8CZssG6tXitbLA2UO3xqq27oVe9aRtV4Z0pbPurfgBvalWapsTPcGqbPf5UpwpM-Y1fjNZWFSOPt6Y2U9TdoiutKgd35z5HX-vXbPUebD_eNqvlNijClPcBwD6KiOIAnHHOQVBKYx0DpKRgWiSU5UlSFCqPE6UJcB6SnMdpzoGKCAhhc_Q47e1sexzA9fLQDtaf7qQ3xCIaeQOeohPlv3HOgpadNbWyJ0mJHM3K0awczcqzWZ95mDIGAP7xNBG-sD_wCnYt</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Fu, Haosheng</creator><creator>Dai, Fengzhou</creator><creator>Hong, Ling</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2166-2516</orcidid><orcidid>https://orcid.org/0000-0002-8885-8807</orcidid><orcidid>https://orcid.org/0000-0002-6710-4264</orcidid></search><sort><creationdate>20240101</creationdate><title>Metasurface Aperture Design for Far-Field Computational Microwave Imaging Beyond Rayleigh Diffraction Limitations</title><author>Fu, Haosheng ; Dai, Fengzhou ; Hong, Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-eed550a4ee43444e81116f6ee90c3f8713b77ccab67af0e4420b469b4e185e003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Antenna radiation patterns</topic><topic>Aperture antennas</topic><topic>Apertures</topic><topic>Computational microwave imaging (CMI)</topic><topic>Differential thermal analysis</topic><topic>Diffraction</topic><topic>Far fields</topic><topic>Image resolution</topic><topic>Imaging</topic><topic>metasurface aperture (MA)</topic><topic>Metasurfaces</topic><topic>Microwave imaging</topic><topic>Radiation</topic><topic>super-resolution</topic><topic>superoscillatory</topic><topic>Superresolution</topic><topic>transmitarray (TA)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Haosheng</creatorcontrib><creatorcontrib>Dai, Fengzhou</creatorcontrib><creatorcontrib>Hong, Ling</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fu, Haosheng</au><au>Dai, Fengzhou</au><au>Hong, Ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metasurface Aperture Design for Far-Field Computational Microwave Imaging Beyond Rayleigh Diffraction Limitations</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>72</volume><issue>1</issue><spage>1</spage><epage>19</epage><pages>1-19</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>Improving the resolution of metasurface apertures (MAs)-based computational microwave imaging (CMI) is of great significance for its practical application. Existing MAs-based CMI (MAs-CMI) has limited resolution due to the limited size of MAs, the so-called Rayleigh diffraction limit (RDL), and must rely on complex back-end algorithms to achieve far-field super-resolution imaging. In this article, a single-frequency (10 GHz) single-sensor double-layer transmitarray (DTA) is designed to improve the resolution of MAs-CMI from the hardware aspect, which consists of a horn as feed, a layer of passive MA (PMA), and a layer of dynamic MA (DMA). By carefully designing the structure of the DTA, a variety of far-field random radiation patterns beyond RDL can be obtained, and the imaging resolution of the MA-CMI can be effectively improved. Simulation and measurement results show that the resolution of the far-field radiation patterns of the proposed DTA is at least 1.56 times that of RDL at the same aperture. Finally, an imaging experiment based on a manufactured DTA is performed to further demonstrate its far-field super-resolution characteristic for CMI. This is the first time that the far-field super-resolution TA based on MAs for CMI is reported.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMTT.2023.3291408</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-2166-2516</orcidid><orcidid>https://orcid.org/0000-0002-8885-8807</orcidid><orcidid>https://orcid.org/0000-0002-6710-4264</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9480 |
ispartof | IEEE transactions on microwave theory and techniques, 2024-01, Vol.72 (1), p.1-19 |
issn | 0018-9480 1557-9670 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMTT_2023_3291408 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Antenna radiation patterns Aperture antennas Apertures Computational microwave imaging (CMI) Differential thermal analysis Diffraction Far fields Image resolution Imaging metasurface aperture (MA) Metasurfaces Microwave imaging Radiation super-resolution superoscillatory Superresolution transmitarray (TA) |
title | Metasurface Aperture Design for Far-Field Computational Microwave Imaging Beyond Rayleigh Diffraction Limitations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T12%3A06%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metasurface%20Aperture%20Design%20for%20Far-Field%20Computational%20Microwave%20Imaging%20Beyond%20Rayleigh%20Diffraction%20Limitations&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Fu,%20Haosheng&rft.date=2024-01-01&rft.volume=72&rft.issue=1&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2023.3291408&rft_dat=%3Cproquest_RIE%3E2913515450%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2913515450&rft_id=info:pmid/&rft_ieee_id=10178101&rfr_iscdi=true |