Metasurface Aperture Design for Far-Field Computational Microwave Imaging Beyond Rayleigh Diffraction Limitations

Improving the resolution of metasurface apertures (MAs)-based computational microwave imaging (CMI) is of great significance for its practical application. Existing MAs-based CMI (MAs-CMI) has limited resolution due to the limited size of MAs, the so-called Rayleigh diffraction limit (RDL), and must...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on microwave theory and techniques 2024-01, Vol.72 (1), p.1-19
Hauptverfasser: Fu, Haosheng, Dai, Fengzhou, Hong, Ling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19
container_issue 1
container_start_page 1
container_title IEEE transactions on microwave theory and techniques
container_volume 72
creator Fu, Haosheng
Dai, Fengzhou
Hong, Ling
description Improving the resolution of metasurface apertures (MAs)-based computational microwave imaging (CMI) is of great significance for its practical application. Existing MAs-based CMI (MAs-CMI) has limited resolution due to the limited size of MAs, the so-called Rayleigh diffraction limit (RDL), and must rely on complex back-end algorithms to achieve far-field super-resolution imaging. In this article, a single-frequency (10 GHz) single-sensor double-layer transmitarray (DTA) is designed to improve the resolution of MAs-CMI from the hardware aspect, which consists of a horn as feed, a layer of passive MA (PMA), and a layer of dynamic MA (DMA). By carefully designing the structure of the DTA, a variety of far-field random radiation patterns beyond RDL can be obtained, and the imaging resolution of the MA-CMI can be effectively improved. Simulation and measurement results show that the resolution of the far-field radiation patterns of the proposed DTA is at least 1.56 times that of RDL at the same aperture. Finally, an imaging experiment based on a manufactured DTA is performed to further demonstrate its far-field super-resolution characteristic for CMI. This is the first time that the far-field super-resolution TA based on MAs for CMI is reported.
doi_str_mv 10.1109/TMTT.2023.3291408
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMTT_2023_3291408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10178101</ieee_id><sourcerecordid>2913515450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-eed550a4ee43444e81116f6ee90c3f8713b77ccab67af0e4420b469b4e185e003</originalsourceid><addsrcrecordid>eNpNkN9LwzAQx4MoOKd_gOBDwOfOpEnb9HFOp4MNQepzSLtLzeivJa2y_96U7sGXOw4-3-Pug9A9JQtKSfqU7bJsEZKQLViYUk7EBZrRKEqCNE7IJZoRQkWQckGu0Y1zBz_yiIgZOu6gV26wWhWAlx3YfrCAX8CZssG6tXitbLA2UO3xqq27oVe9aRtV4Z0pbPurfgBvalWapsTPcGqbPf5UpwpM-Y1fjNZWFSOPt6Y2U9TdoiutKgd35z5HX-vXbPUebD_eNqvlNijClPcBwD6KiOIAnHHOQVBKYx0DpKRgWiSU5UlSFCqPE6UJcB6SnMdpzoGKCAhhc_Q47e1sexzA9fLQDtaf7qQ3xCIaeQOeohPlv3HOgpadNbWyJ0mJHM3K0awczcqzWZ95mDIGAP7xNBG-sD_wCnYt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2913515450</pqid></control><display><type>article</type><title>Metasurface Aperture Design for Far-Field Computational Microwave Imaging Beyond Rayleigh Diffraction Limitations</title><source>IEEE Electronic Library (IEL)</source><creator>Fu, Haosheng ; Dai, Fengzhou ; Hong, Ling</creator><creatorcontrib>Fu, Haosheng ; Dai, Fengzhou ; Hong, Ling</creatorcontrib><description>Improving the resolution of metasurface apertures (MAs)-based computational microwave imaging (CMI) is of great significance for its practical application. Existing MAs-based CMI (MAs-CMI) has limited resolution due to the limited size of MAs, the so-called Rayleigh diffraction limit (RDL), and must rely on complex back-end algorithms to achieve far-field super-resolution imaging. In this article, a single-frequency (10 GHz) single-sensor double-layer transmitarray (DTA) is designed to improve the resolution of MAs-CMI from the hardware aspect, which consists of a horn as feed, a layer of passive MA (PMA), and a layer of dynamic MA (DMA). By carefully designing the structure of the DTA, a variety of far-field random radiation patterns beyond RDL can be obtained, and the imaging resolution of the MA-CMI can be effectively improved. Simulation and measurement results show that the resolution of the far-field radiation patterns of the proposed DTA is at least 1.56 times that of RDL at the same aperture. Finally, an imaging experiment based on a manufactured DTA is performed to further demonstrate its far-field super-resolution characteristic for CMI. This is the first time that the far-field super-resolution TA based on MAs for CMI is reported.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2023.3291408</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Antenna radiation patterns ; Aperture antennas ; Apertures ; Computational microwave imaging (CMI) ; Differential thermal analysis ; Diffraction ; Far fields ; Image resolution ; Imaging ; metasurface aperture (MA) ; Metasurfaces ; Microwave imaging ; Radiation ; super-resolution ; superoscillatory ; Superresolution ; transmitarray (TA)</subject><ispartof>IEEE transactions on microwave theory and techniques, 2024-01, Vol.72 (1), p.1-19</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-eed550a4ee43444e81116f6ee90c3f8713b77ccab67af0e4420b469b4e185e003</citedby><cites>FETCH-LOGICAL-c294t-eed550a4ee43444e81116f6ee90c3f8713b77ccab67af0e4420b469b4e185e003</cites><orcidid>0000-0003-2166-2516 ; 0000-0002-8885-8807 ; 0000-0002-6710-4264</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10178101$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10178101$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fu, Haosheng</creatorcontrib><creatorcontrib>Dai, Fengzhou</creatorcontrib><creatorcontrib>Hong, Ling</creatorcontrib><title>Metasurface Aperture Design for Far-Field Computational Microwave Imaging Beyond Rayleigh Diffraction Limitations</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>Improving the resolution of metasurface apertures (MAs)-based computational microwave imaging (CMI) is of great significance for its practical application. Existing MAs-based CMI (MAs-CMI) has limited resolution due to the limited size of MAs, the so-called Rayleigh diffraction limit (RDL), and must rely on complex back-end algorithms to achieve far-field super-resolution imaging. In this article, a single-frequency (10 GHz) single-sensor double-layer transmitarray (DTA) is designed to improve the resolution of MAs-CMI from the hardware aspect, which consists of a horn as feed, a layer of passive MA (PMA), and a layer of dynamic MA (DMA). By carefully designing the structure of the DTA, a variety of far-field random radiation patterns beyond RDL can be obtained, and the imaging resolution of the MA-CMI can be effectively improved. Simulation and measurement results show that the resolution of the far-field radiation patterns of the proposed DTA is at least 1.56 times that of RDL at the same aperture. Finally, an imaging experiment based on a manufactured DTA is performed to further demonstrate its far-field super-resolution characteristic for CMI. This is the first time that the far-field super-resolution TA based on MAs for CMI is reported.</description><subject>Algorithms</subject><subject>Antenna radiation patterns</subject><subject>Aperture antennas</subject><subject>Apertures</subject><subject>Computational microwave imaging (CMI)</subject><subject>Differential thermal analysis</subject><subject>Diffraction</subject><subject>Far fields</subject><subject>Image resolution</subject><subject>Imaging</subject><subject>metasurface aperture (MA)</subject><subject>Metasurfaces</subject><subject>Microwave imaging</subject><subject>Radiation</subject><subject>super-resolution</subject><subject>superoscillatory</subject><subject>Superresolution</subject><subject>transmitarray (TA)</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkN9LwzAQx4MoOKd_gOBDwOfOpEnb9HFOp4MNQepzSLtLzeivJa2y_96U7sGXOw4-3-Pug9A9JQtKSfqU7bJsEZKQLViYUk7EBZrRKEqCNE7IJZoRQkWQckGu0Y1zBz_yiIgZOu6gV26wWhWAlx3YfrCAX8CZssG6tXitbLA2UO3xqq27oVe9aRtV4Z0pbPurfgBvalWapsTPcGqbPf5UpwpM-Y1fjNZWFSOPt6Y2U9TdoiutKgd35z5HX-vXbPUebD_eNqvlNijClPcBwD6KiOIAnHHOQVBKYx0DpKRgWiSU5UlSFCqPE6UJcB6SnMdpzoGKCAhhc_Q47e1sexzA9fLQDtaf7qQ3xCIaeQOeohPlv3HOgpadNbWyJ0mJHM3K0awczcqzWZ95mDIGAP7xNBG-sD_wCnYt</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Fu, Haosheng</creator><creator>Dai, Fengzhou</creator><creator>Hong, Ling</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2166-2516</orcidid><orcidid>https://orcid.org/0000-0002-8885-8807</orcidid><orcidid>https://orcid.org/0000-0002-6710-4264</orcidid></search><sort><creationdate>20240101</creationdate><title>Metasurface Aperture Design for Far-Field Computational Microwave Imaging Beyond Rayleigh Diffraction Limitations</title><author>Fu, Haosheng ; Dai, Fengzhou ; Hong, Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-eed550a4ee43444e81116f6ee90c3f8713b77ccab67af0e4420b469b4e185e003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Antenna radiation patterns</topic><topic>Aperture antennas</topic><topic>Apertures</topic><topic>Computational microwave imaging (CMI)</topic><topic>Differential thermal analysis</topic><topic>Diffraction</topic><topic>Far fields</topic><topic>Image resolution</topic><topic>Imaging</topic><topic>metasurface aperture (MA)</topic><topic>Metasurfaces</topic><topic>Microwave imaging</topic><topic>Radiation</topic><topic>super-resolution</topic><topic>superoscillatory</topic><topic>Superresolution</topic><topic>transmitarray (TA)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Haosheng</creatorcontrib><creatorcontrib>Dai, Fengzhou</creatorcontrib><creatorcontrib>Hong, Ling</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fu, Haosheng</au><au>Dai, Fengzhou</au><au>Hong, Ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metasurface Aperture Design for Far-Field Computational Microwave Imaging Beyond Rayleigh Diffraction Limitations</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>72</volume><issue>1</issue><spage>1</spage><epage>19</epage><pages>1-19</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>Improving the resolution of metasurface apertures (MAs)-based computational microwave imaging (CMI) is of great significance for its practical application. Existing MAs-based CMI (MAs-CMI) has limited resolution due to the limited size of MAs, the so-called Rayleigh diffraction limit (RDL), and must rely on complex back-end algorithms to achieve far-field super-resolution imaging. In this article, a single-frequency (10 GHz) single-sensor double-layer transmitarray (DTA) is designed to improve the resolution of MAs-CMI from the hardware aspect, which consists of a horn as feed, a layer of passive MA (PMA), and a layer of dynamic MA (DMA). By carefully designing the structure of the DTA, a variety of far-field random radiation patterns beyond RDL can be obtained, and the imaging resolution of the MA-CMI can be effectively improved. Simulation and measurement results show that the resolution of the far-field radiation patterns of the proposed DTA is at least 1.56 times that of RDL at the same aperture. Finally, an imaging experiment based on a manufactured DTA is performed to further demonstrate its far-field super-resolution characteristic for CMI. This is the first time that the far-field super-resolution TA based on MAs for CMI is reported.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMTT.2023.3291408</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-2166-2516</orcidid><orcidid>https://orcid.org/0000-0002-8885-8807</orcidid><orcidid>https://orcid.org/0000-0002-6710-4264</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9480
ispartof IEEE transactions on microwave theory and techniques, 2024-01, Vol.72 (1), p.1-19
issn 0018-9480
1557-9670
language eng
recordid cdi_crossref_primary_10_1109_TMTT_2023_3291408
source IEEE Electronic Library (IEL)
subjects Algorithms
Antenna radiation patterns
Aperture antennas
Apertures
Computational microwave imaging (CMI)
Differential thermal analysis
Diffraction
Far fields
Image resolution
Imaging
metasurface aperture (MA)
Metasurfaces
Microwave imaging
Radiation
super-resolution
superoscillatory
Superresolution
transmitarray (TA)
title Metasurface Aperture Design for Far-Field Computational Microwave Imaging Beyond Rayleigh Diffraction Limitations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T12%3A06%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metasurface%20Aperture%20Design%20for%20Far-Field%20Computational%20Microwave%20Imaging%20Beyond%20Rayleigh%20Diffraction%20Limitations&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Fu,%20Haosheng&rft.date=2024-01-01&rft.volume=72&rft.issue=1&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2023.3291408&rft_dat=%3Cproquest_RIE%3E2913515450%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2913515450&rft_id=info:pmid/&rft_ieee_id=10178101&rfr_iscdi=true