Dispersion and Polarization Control in Below-Cutoff Circular Waveguides Using Anisotropic Metasurface Liners

This article explores the application of metasurface (MTS) liners in perfect-electric-conducting (PEC) circular waveguides for cutoff manipulation and the introduction of controllable chiral properties. A dispersion equation is derived to predict the propagation characteristics of a circular wavegui...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on microwave theory and techniques 2023-08, Vol.71 (8), p.1-12
Hauptverfasser: Barker, Christopher J. M., Zanche, Nicola De, Iyer, Ashwin K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 8
container_start_page 1
container_title IEEE transactions on microwave theory and techniques
container_volume 71
creator Barker, Christopher J. M.
Zanche, Nicola De
Iyer, Ashwin K.
description This article explores the application of metasurface (MTS) liners in perfect-electric-conducting (PEC) circular waveguides for cutoff manipulation and the introduction of controllable chiral properties. A dispersion equation is derived to predict the propagation characteristics of a circular waveguide lined with an MTS exhibiting a general full tensor surface admittance response. A design procedure for the MTS liner is presented and validated with three design examples. Two of the examples use a capacitively loaded grid topology akin to a Jerusalem cross structure aligned with the principal coordinate system of the waveguide, resulting in a diagonal susceptance tensor. These two examples are used to demonstrate how the dispersion properties of the waveguide can be significantly modified based on the geometry of the MTS-lined waveguide system and the surface admittance exhibited by the MTS. The third design consists of a rotated fully printed Jerusalem cross structure with a general tensor susceptance, which is found to produce a separation in the dispersion curves of the left-and right-hand circularly polarized modes in the waveguide while also producing below-cutoff propagation. Theoretically predicted dispersions are validated with full-wave electromagnetic simulations.
doi_str_mv 10.1109/TMTT.2023.3263396
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMTT_2023_3263396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10099026</ieee_id><sourcerecordid>2847957722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-2a0d0ae2798f3e54c647373f107a90ccd5ea606c00d1b0a51a64bb98c70107413</originalsourceid><addsrcrecordid>eNpNkE1LxDAQhoMouK7-AMFDwHPXyUeb5rjWT9hFD108lmyaLllqU5NW0V9vynrwNMzwvPPCg9AlgQUhIG_KdVkuKFC2YDRjTGZHaEbSVCQyE3CMZgAkTyTP4RSdhbCPK08hn6H2zobe-GBdh1VX41fXKm9_1DAdCtcN3rXYdvjWtO4rKcbBNQ0urNdj5PCb-jS70dYm4E2w3Q4vOxtczPRW47UZVBh9o7TBK9vFknN00qg2mIu_OUebh_uyeEpWL4_PxXKVaCr5kFAFNShDhcwbZlKuMy6YYA0BoSRoXadGZZBpgJpsQaVEZXy7lbkWEBFO2BxdH_723n2MJgzV3o2-i5UVzbmQqRCURoocKO1dCN40Ve_tu_LfFYFqklpNUqtJavUnNWauDhlrjPnHg5QQkV9iznRC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2847957722</pqid></control><display><type>article</type><title>Dispersion and Polarization Control in Below-Cutoff Circular Waveguides Using Anisotropic Metasurface Liners</title><source>IEEE Electronic Library (IEL)</source><creator>Barker, Christopher J. M. ; Zanche, Nicola De ; Iyer, Ashwin K.</creator><creatorcontrib>Barker, Christopher J. M. ; Zanche, Nicola De ; Iyer, Ashwin K.</creatorcontrib><description>This article explores the application of metasurface (MTS) liners in perfect-electric-conducting (PEC) circular waveguides for cutoff manipulation and the introduction of controllable chiral properties. A dispersion equation is derived to predict the propagation characteristics of a circular waveguide lined with an MTS exhibiting a general full tensor surface admittance response. A design procedure for the MTS liner is presented and validated with three design examples. Two of the examples use a capacitively loaded grid topology akin to a Jerusalem cross structure aligned with the principal coordinate system of the waveguide, resulting in a diagonal susceptance tensor. These two examples are used to demonstrate how the dispersion properties of the waveguide can be significantly modified based on the geometry of the MTS-lined waveguide system and the surface admittance exhibited by the MTS. The third design consists of a rotated fully printed Jerusalem cross structure with a general tensor susceptance, which is found to produce a separation in the dispersion curves of the left-and right-hand circularly polarized modes in the waveguide while also producing below-cutoff propagation. Theoretically predicted dispersions are validated with full-wave electromagnetic simulations.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2023.3263396</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Admittance ; Anisotropic surface admittances ; backward wave ; below-cutoff propagation ; chirality ; Circular polarization ; Circular waveguides ; Controllability ; Coordinates ; Dispersion ; Dispersion curve analysis ; Electrical impedance ; Geometry ; helical waveguides ; inhomogeneous waveguide ; Linings ; Mathematical analysis ; Metasurfaces ; metasurfaces (MTSs) ; miniaturization ; polarization control ; printed circuits ; Surface impedance ; Surface waves ; Susceptance ; Tensors ; Topology ; Waveguide components</subject><ispartof>IEEE transactions on microwave theory and techniques, 2023-08, Vol.71 (8), p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-2a0d0ae2798f3e54c647373f107a90ccd5ea606c00d1b0a51a64bb98c70107413</citedby><cites>FETCH-LOGICAL-c294t-2a0d0ae2798f3e54c647373f107a90ccd5ea606c00d1b0a51a64bb98c70107413</cites><orcidid>0000-0003-4424-8430 ; 0000-0002-4709-7095 ; 0000-0002-5280-4751</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10099026$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10099026$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Barker, Christopher J. M.</creatorcontrib><creatorcontrib>Zanche, Nicola De</creatorcontrib><creatorcontrib>Iyer, Ashwin K.</creatorcontrib><title>Dispersion and Polarization Control in Below-Cutoff Circular Waveguides Using Anisotropic Metasurface Liners</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>This article explores the application of metasurface (MTS) liners in perfect-electric-conducting (PEC) circular waveguides for cutoff manipulation and the introduction of controllable chiral properties. A dispersion equation is derived to predict the propagation characteristics of a circular waveguide lined with an MTS exhibiting a general full tensor surface admittance response. A design procedure for the MTS liner is presented and validated with three design examples. Two of the examples use a capacitively loaded grid topology akin to a Jerusalem cross structure aligned with the principal coordinate system of the waveguide, resulting in a diagonal susceptance tensor. These two examples are used to demonstrate how the dispersion properties of the waveguide can be significantly modified based on the geometry of the MTS-lined waveguide system and the surface admittance exhibited by the MTS. The third design consists of a rotated fully printed Jerusalem cross structure with a general tensor susceptance, which is found to produce a separation in the dispersion curves of the left-and right-hand circularly polarized modes in the waveguide while also producing below-cutoff propagation. Theoretically predicted dispersions are validated with full-wave electromagnetic simulations.</description><subject>Admittance</subject><subject>Anisotropic surface admittances</subject><subject>backward wave</subject><subject>below-cutoff propagation</subject><subject>chirality</subject><subject>Circular polarization</subject><subject>Circular waveguides</subject><subject>Controllability</subject><subject>Coordinates</subject><subject>Dispersion</subject><subject>Dispersion curve analysis</subject><subject>Electrical impedance</subject><subject>Geometry</subject><subject>helical waveguides</subject><subject>inhomogeneous waveguide</subject><subject>Linings</subject><subject>Mathematical analysis</subject><subject>Metasurfaces</subject><subject>metasurfaces (MTSs)</subject><subject>miniaturization</subject><subject>polarization control</subject><subject>printed circuits</subject><subject>Surface impedance</subject><subject>Surface waves</subject><subject>Susceptance</subject><subject>Tensors</subject><subject>Topology</subject><subject>Waveguide components</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LxDAQhoMouK7-AMFDwHPXyUeb5rjWT9hFD108lmyaLllqU5NW0V9vynrwNMzwvPPCg9AlgQUhIG_KdVkuKFC2YDRjTGZHaEbSVCQyE3CMZgAkTyTP4RSdhbCPK08hn6H2zobe-GBdh1VX41fXKm9_1DAdCtcN3rXYdvjWtO4rKcbBNQ0urNdj5PCb-jS70dYm4E2w3Q4vOxtczPRW47UZVBh9o7TBK9vFknN00qg2mIu_OUebh_uyeEpWL4_PxXKVaCr5kFAFNShDhcwbZlKuMy6YYA0BoSRoXadGZZBpgJpsQaVEZXy7lbkWEBFO2BxdH_723n2MJgzV3o2-i5UVzbmQqRCURoocKO1dCN40Ve_tu_LfFYFqklpNUqtJavUnNWauDhlrjPnHg5QQkV9iznRC</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Barker, Christopher J. M.</creator><creator>Zanche, Nicola De</creator><creator>Iyer, Ashwin K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4424-8430</orcidid><orcidid>https://orcid.org/0000-0002-4709-7095</orcidid><orcidid>https://orcid.org/0000-0002-5280-4751</orcidid></search><sort><creationdate>20230801</creationdate><title>Dispersion and Polarization Control in Below-Cutoff Circular Waveguides Using Anisotropic Metasurface Liners</title><author>Barker, Christopher J. M. ; Zanche, Nicola De ; Iyer, Ashwin K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-2a0d0ae2798f3e54c647373f107a90ccd5ea606c00d1b0a51a64bb98c70107413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Admittance</topic><topic>Anisotropic surface admittances</topic><topic>backward wave</topic><topic>below-cutoff propagation</topic><topic>chirality</topic><topic>Circular polarization</topic><topic>Circular waveguides</topic><topic>Controllability</topic><topic>Coordinates</topic><topic>Dispersion</topic><topic>Dispersion curve analysis</topic><topic>Electrical impedance</topic><topic>Geometry</topic><topic>helical waveguides</topic><topic>inhomogeneous waveguide</topic><topic>Linings</topic><topic>Mathematical analysis</topic><topic>Metasurfaces</topic><topic>metasurfaces (MTSs)</topic><topic>miniaturization</topic><topic>polarization control</topic><topic>printed circuits</topic><topic>Surface impedance</topic><topic>Surface waves</topic><topic>Susceptance</topic><topic>Tensors</topic><topic>Topology</topic><topic>Waveguide components</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barker, Christopher J. M.</creatorcontrib><creatorcontrib>Zanche, Nicola De</creatorcontrib><creatorcontrib>Iyer, Ashwin K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Barker, Christopher J. M.</au><au>Zanche, Nicola De</au><au>Iyer, Ashwin K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dispersion and Polarization Control in Below-Cutoff Circular Waveguides Using Anisotropic Metasurface Liners</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>71</volume><issue>8</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>This article explores the application of metasurface (MTS) liners in perfect-electric-conducting (PEC) circular waveguides for cutoff manipulation and the introduction of controllable chiral properties. A dispersion equation is derived to predict the propagation characteristics of a circular waveguide lined with an MTS exhibiting a general full tensor surface admittance response. A design procedure for the MTS liner is presented and validated with three design examples. Two of the examples use a capacitively loaded grid topology akin to a Jerusalem cross structure aligned with the principal coordinate system of the waveguide, resulting in a diagonal susceptance tensor. These two examples are used to demonstrate how the dispersion properties of the waveguide can be significantly modified based on the geometry of the MTS-lined waveguide system and the surface admittance exhibited by the MTS. The third design consists of a rotated fully printed Jerusalem cross structure with a general tensor susceptance, which is found to produce a separation in the dispersion curves of the left-and right-hand circularly polarized modes in the waveguide while also producing below-cutoff propagation. Theoretically predicted dispersions are validated with full-wave electromagnetic simulations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMTT.2023.3263396</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4424-8430</orcidid><orcidid>https://orcid.org/0000-0002-4709-7095</orcidid><orcidid>https://orcid.org/0000-0002-5280-4751</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9480
ispartof IEEE transactions on microwave theory and techniques, 2023-08, Vol.71 (8), p.1-12
issn 0018-9480
1557-9670
language eng
recordid cdi_crossref_primary_10_1109_TMTT_2023_3263396
source IEEE Electronic Library (IEL)
subjects Admittance
Anisotropic surface admittances
backward wave
below-cutoff propagation
chirality
Circular polarization
Circular waveguides
Controllability
Coordinates
Dispersion
Dispersion curve analysis
Electrical impedance
Geometry
helical waveguides
inhomogeneous waveguide
Linings
Mathematical analysis
Metasurfaces
metasurfaces (MTSs)
miniaturization
polarization control
printed circuits
Surface impedance
Surface waves
Susceptance
Tensors
Topology
Waveguide components
title Dispersion and Polarization Control in Below-Cutoff Circular Waveguides Using Anisotropic Metasurface Liners
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A54%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dispersion%20and%20Polarization%20Control%20in%20Below-Cutoff%20Circular%20Waveguides%20Using%20Anisotropic%20Metasurface%20Liners&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Barker,%20Christopher%20J.%20M.&rft.date=2023-08-01&rft.volume=71&rft.issue=8&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2023.3263396&rft_dat=%3Cproquest_RIE%3E2847957722%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2847957722&rft_id=info:pmid/&rft_ieee_id=10099026&rfr_iscdi=true