Dispersion and Polarization Control in Below-Cutoff Circular Waveguides Using Anisotropic Metasurface Liners
This article explores the application of metasurface (MTS) liners in perfect-electric-conducting (PEC) circular waveguides for cutoff manipulation and the introduction of controllable chiral properties. A dispersion equation is derived to predict the propagation characteristics of a circular wavegui...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on microwave theory and techniques 2023-08, Vol.71 (8), p.1-12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 8 |
container_start_page | 1 |
container_title | IEEE transactions on microwave theory and techniques |
container_volume | 71 |
creator | Barker, Christopher J. M. Zanche, Nicola De Iyer, Ashwin K. |
description | This article explores the application of metasurface (MTS) liners in perfect-electric-conducting (PEC) circular waveguides for cutoff manipulation and the introduction of controllable chiral properties. A dispersion equation is derived to predict the propagation characteristics of a circular waveguide lined with an MTS exhibiting a general full tensor surface admittance response. A design procedure for the MTS liner is presented and validated with three design examples. Two of the examples use a capacitively loaded grid topology akin to a Jerusalem cross structure aligned with the principal coordinate system of the waveguide, resulting in a diagonal susceptance tensor. These two examples are used to demonstrate how the dispersion properties of the waveguide can be significantly modified based on the geometry of the MTS-lined waveguide system and the surface admittance exhibited by the MTS. The third design consists of a rotated fully printed Jerusalem cross structure with a general tensor susceptance, which is found to produce a separation in the dispersion curves of the left-and right-hand circularly polarized modes in the waveguide while also producing below-cutoff propagation. Theoretically predicted dispersions are validated with full-wave electromagnetic simulations. |
doi_str_mv | 10.1109/TMTT.2023.3263396 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMTT_2023_3263396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10099026</ieee_id><sourcerecordid>2847957722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-2a0d0ae2798f3e54c647373f107a90ccd5ea606c00d1b0a51a64bb98c70107413</originalsourceid><addsrcrecordid>eNpNkE1LxDAQhoMouK7-AMFDwHPXyUeb5rjWT9hFD108lmyaLllqU5NW0V9vynrwNMzwvPPCg9AlgQUhIG_KdVkuKFC2YDRjTGZHaEbSVCQyE3CMZgAkTyTP4RSdhbCPK08hn6H2zobe-GBdh1VX41fXKm9_1DAdCtcN3rXYdvjWtO4rKcbBNQ0urNdj5PCb-jS70dYm4E2w3Q4vOxtczPRW47UZVBh9o7TBK9vFknN00qg2mIu_OUebh_uyeEpWL4_PxXKVaCr5kFAFNShDhcwbZlKuMy6YYA0BoSRoXadGZZBpgJpsQaVEZXy7lbkWEBFO2BxdH_723n2MJgzV3o2-i5UVzbmQqRCURoocKO1dCN40Ve_tu_LfFYFqklpNUqtJavUnNWauDhlrjPnHg5QQkV9iznRC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2847957722</pqid></control><display><type>article</type><title>Dispersion and Polarization Control in Below-Cutoff Circular Waveguides Using Anisotropic Metasurface Liners</title><source>IEEE Electronic Library (IEL)</source><creator>Barker, Christopher J. M. ; Zanche, Nicola De ; Iyer, Ashwin K.</creator><creatorcontrib>Barker, Christopher J. M. ; Zanche, Nicola De ; Iyer, Ashwin K.</creatorcontrib><description>This article explores the application of metasurface (MTS) liners in perfect-electric-conducting (PEC) circular waveguides for cutoff manipulation and the introduction of controllable chiral properties. A dispersion equation is derived to predict the propagation characteristics of a circular waveguide lined with an MTS exhibiting a general full tensor surface admittance response. A design procedure for the MTS liner is presented and validated with three design examples. Two of the examples use a capacitively loaded grid topology akin to a Jerusalem cross structure aligned with the principal coordinate system of the waveguide, resulting in a diagonal susceptance tensor. These two examples are used to demonstrate how the dispersion properties of the waveguide can be significantly modified based on the geometry of the MTS-lined waveguide system and the surface admittance exhibited by the MTS. The third design consists of a rotated fully printed Jerusalem cross structure with a general tensor susceptance, which is found to produce a separation in the dispersion curves of the left-and right-hand circularly polarized modes in the waveguide while also producing below-cutoff propagation. Theoretically predicted dispersions are validated with full-wave electromagnetic simulations.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2023.3263396</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Admittance ; Anisotropic surface admittances ; backward wave ; below-cutoff propagation ; chirality ; Circular polarization ; Circular waveguides ; Controllability ; Coordinates ; Dispersion ; Dispersion curve analysis ; Electrical impedance ; Geometry ; helical waveguides ; inhomogeneous waveguide ; Linings ; Mathematical analysis ; Metasurfaces ; metasurfaces (MTSs) ; miniaturization ; polarization control ; printed circuits ; Surface impedance ; Surface waves ; Susceptance ; Tensors ; Topology ; Waveguide components</subject><ispartof>IEEE transactions on microwave theory and techniques, 2023-08, Vol.71 (8), p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-2a0d0ae2798f3e54c647373f107a90ccd5ea606c00d1b0a51a64bb98c70107413</citedby><cites>FETCH-LOGICAL-c294t-2a0d0ae2798f3e54c647373f107a90ccd5ea606c00d1b0a51a64bb98c70107413</cites><orcidid>0000-0003-4424-8430 ; 0000-0002-4709-7095 ; 0000-0002-5280-4751</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10099026$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10099026$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Barker, Christopher J. M.</creatorcontrib><creatorcontrib>Zanche, Nicola De</creatorcontrib><creatorcontrib>Iyer, Ashwin K.</creatorcontrib><title>Dispersion and Polarization Control in Below-Cutoff Circular Waveguides Using Anisotropic Metasurface Liners</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>This article explores the application of metasurface (MTS) liners in perfect-electric-conducting (PEC) circular waveguides for cutoff manipulation and the introduction of controllable chiral properties. A dispersion equation is derived to predict the propagation characteristics of a circular waveguide lined with an MTS exhibiting a general full tensor surface admittance response. A design procedure for the MTS liner is presented and validated with three design examples. Two of the examples use a capacitively loaded grid topology akin to a Jerusalem cross structure aligned with the principal coordinate system of the waveguide, resulting in a diagonal susceptance tensor. These two examples are used to demonstrate how the dispersion properties of the waveguide can be significantly modified based on the geometry of the MTS-lined waveguide system and the surface admittance exhibited by the MTS. The third design consists of a rotated fully printed Jerusalem cross structure with a general tensor susceptance, which is found to produce a separation in the dispersion curves of the left-and right-hand circularly polarized modes in the waveguide while also producing below-cutoff propagation. Theoretically predicted dispersions are validated with full-wave electromagnetic simulations.</description><subject>Admittance</subject><subject>Anisotropic surface admittances</subject><subject>backward wave</subject><subject>below-cutoff propagation</subject><subject>chirality</subject><subject>Circular polarization</subject><subject>Circular waveguides</subject><subject>Controllability</subject><subject>Coordinates</subject><subject>Dispersion</subject><subject>Dispersion curve analysis</subject><subject>Electrical impedance</subject><subject>Geometry</subject><subject>helical waveguides</subject><subject>inhomogeneous waveguide</subject><subject>Linings</subject><subject>Mathematical analysis</subject><subject>Metasurfaces</subject><subject>metasurfaces (MTSs)</subject><subject>miniaturization</subject><subject>polarization control</subject><subject>printed circuits</subject><subject>Surface impedance</subject><subject>Surface waves</subject><subject>Susceptance</subject><subject>Tensors</subject><subject>Topology</subject><subject>Waveguide components</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LxDAQhoMouK7-AMFDwHPXyUeb5rjWT9hFD108lmyaLllqU5NW0V9vynrwNMzwvPPCg9AlgQUhIG_KdVkuKFC2YDRjTGZHaEbSVCQyE3CMZgAkTyTP4RSdhbCPK08hn6H2zobe-GBdh1VX41fXKm9_1DAdCtcN3rXYdvjWtO4rKcbBNQ0urNdj5PCb-jS70dYm4E2w3Q4vOxtczPRW47UZVBh9o7TBK9vFknN00qg2mIu_OUebh_uyeEpWL4_PxXKVaCr5kFAFNShDhcwbZlKuMy6YYA0BoSRoXadGZZBpgJpsQaVEZXy7lbkWEBFO2BxdH_723n2MJgzV3o2-i5UVzbmQqRCURoocKO1dCN40Ve_tu_LfFYFqklpNUqtJavUnNWauDhlrjPnHg5QQkV9iznRC</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Barker, Christopher J. M.</creator><creator>Zanche, Nicola De</creator><creator>Iyer, Ashwin K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4424-8430</orcidid><orcidid>https://orcid.org/0000-0002-4709-7095</orcidid><orcidid>https://orcid.org/0000-0002-5280-4751</orcidid></search><sort><creationdate>20230801</creationdate><title>Dispersion and Polarization Control in Below-Cutoff Circular Waveguides Using Anisotropic Metasurface Liners</title><author>Barker, Christopher J. M. ; Zanche, Nicola De ; Iyer, Ashwin K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-2a0d0ae2798f3e54c647373f107a90ccd5ea606c00d1b0a51a64bb98c70107413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Admittance</topic><topic>Anisotropic surface admittances</topic><topic>backward wave</topic><topic>below-cutoff propagation</topic><topic>chirality</topic><topic>Circular polarization</topic><topic>Circular waveguides</topic><topic>Controllability</topic><topic>Coordinates</topic><topic>Dispersion</topic><topic>Dispersion curve analysis</topic><topic>Electrical impedance</topic><topic>Geometry</topic><topic>helical waveguides</topic><topic>inhomogeneous waveguide</topic><topic>Linings</topic><topic>Mathematical analysis</topic><topic>Metasurfaces</topic><topic>metasurfaces (MTSs)</topic><topic>miniaturization</topic><topic>polarization control</topic><topic>printed circuits</topic><topic>Surface impedance</topic><topic>Surface waves</topic><topic>Susceptance</topic><topic>Tensors</topic><topic>Topology</topic><topic>Waveguide components</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barker, Christopher J. M.</creatorcontrib><creatorcontrib>Zanche, Nicola De</creatorcontrib><creatorcontrib>Iyer, Ashwin K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Barker, Christopher J. M.</au><au>Zanche, Nicola De</au><au>Iyer, Ashwin K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dispersion and Polarization Control in Below-Cutoff Circular Waveguides Using Anisotropic Metasurface Liners</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>71</volume><issue>8</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>This article explores the application of metasurface (MTS) liners in perfect-electric-conducting (PEC) circular waveguides for cutoff manipulation and the introduction of controllable chiral properties. A dispersion equation is derived to predict the propagation characteristics of a circular waveguide lined with an MTS exhibiting a general full tensor surface admittance response. A design procedure for the MTS liner is presented and validated with three design examples. Two of the examples use a capacitively loaded grid topology akin to a Jerusalem cross structure aligned with the principal coordinate system of the waveguide, resulting in a diagonal susceptance tensor. These two examples are used to demonstrate how the dispersion properties of the waveguide can be significantly modified based on the geometry of the MTS-lined waveguide system and the surface admittance exhibited by the MTS. The third design consists of a rotated fully printed Jerusalem cross structure with a general tensor susceptance, which is found to produce a separation in the dispersion curves of the left-and right-hand circularly polarized modes in the waveguide while also producing below-cutoff propagation. Theoretically predicted dispersions are validated with full-wave electromagnetic simulations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMTT.2023.3263396</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4424-8430</orcidid><orcidid>https://orcid.org/0000-0002-4709-7095</orcidid><orcidid>https://orcid.org/0000-0002-5280-4751</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9480 |
ispartof | IEEE transactions on microwave theory and techniques, 2023-08, Vol.71 (8), p.1-12 |
issn | 0018-9480 1557-9670 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMTT_2023_3263396 |
source | IEEE Electronic Library (IEL) |
subjects | Admittance Anisotropic surface admittances backward wave below-cutoff propagation chirality Circular polarization Circular waveguides Controllability Coordinates Dispersion Dispersion curve analysis Electrical impedance Geometry helical waveguides inhomogeneous waveguide Linings Mathematical analysis Metasurfaces metasurfaces (MTSs) miniaturization polarization control printed circuits Surface impedance Surface waves Susceptance Tensors Topology Waveguide components |
title | Dispersion and Polarization Control in Below-Cutoff Circular Waveguides Using Anisotropic Metasurface Liners |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A54%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dispersion%20and%20Polarization%20Control%20in%20Below-Cutoff%20Circular%20Waveguides%20Using%20Anisotropic%20Metasurface%20Liners&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Barker,%20Christopher%20J.%20M.&rft.date=2023-08-01&rft.volume=71&rft.issue=8&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2023.3263396&rft_dat=%3Cproquest_RIE%3E2847957722%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2847957722&rft_id=info:pmid/&rft_ieee_id=10099026&rfr_iscdi=true |