W -Band GaN HEMT Frequency Multipliers

This article presents three W -band frequency multiplier monolithically microwave integrated circuits (MMICs) designed in a 40-nm gallium nitride (GaN) on SiC process. Two doublers with fundamental-frequency input from 37.5 to 55 GHz both use two 4 \times 37.5 \mu m HEMTs. One is a single-ended...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on microwave theory and techniques 2023-10, Vol.71 (10), p.1-10
Hauptverfasser: Sonnenberg, Timothy, Verploegh, Shane, Pinto, Mauricio, Popovic, Zoya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 10
container_start_page 1
container_title IEEE transactions on microwave theory and techniques
container_volume 71
creator Sonnenberg, Timothy
Verploegh, Shane
Pinto, Mauricio
Popovic, Zoya
description This article presents three W -band frequency multiplier monolithically microwave integrated circuits (MMICs) designed in a 40-nm gallium nitride (GaN) on SiC process. Two doublers with fundamental-frequency input from 37.5 to 55 GHz both use two 4 \times 37.5 \mu m HEMTs. One is a single-ended topology with a postmultiplication amplifier, while the other is a balanced power-combining topology with a planar Marchand balun adapted to the passives in the MMIC process. The tripler is a balanced configuration for an input fundamental frequency from 25 to 37 GHz. All designs are stable over a wide range of operating conditions. The single-ended, postamplified doubler shows conversion gain from 80 to 85 GHz with a peak gain of 1.5 dB at 10 dBm of input power and 900 mW of dc power. The balanced doubler MMIC has a conversion gain from about 90 to 100 GHz with a peak gain of 3.8 dB at 100 GHz for an input power of 10 dBm and 500 mW of dc power consumption. Both doublers achieve fundamental-frequency suppression above 55 dBc. The results show that a topology that combines the two doubler approaches in GaN should result in simultaneous conversion gain with higher power and improved fundamental-frequency suppression. The tripler measures an output power of 10 \pm 1.5 dBm for an input power of 19 dBm from 75 to 110 GHz, with fundamental-and second-harmonic suppressions of 29 and 29.5 dBc, respectively.
doi_str_mv 10.1109/TMTT.2023.3253185
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMTT_2023_3253185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10073585</ieee_id><sourcerecordid>2873591109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-b09943fb8013a4c1e87ad0b1b825d21ca6c3a3571c5af930fd703eddc6e6a0b43</originalsourceid><addsrcrecordid>eNpNkE9LxDAQxYMoWFc_gOChIHhrnUmaNjnqsn-ErV4qHkOaptBlbddke9hvvym7B0_DML_3ZuYR8oiQIoJ8rcqqSilQljLKGQp-RSLkvEhkXsA1iQBQJDITcEvuvN-GNuMgIvLyEyfvum_ilf6M14uyipfO_o22N8e4HHeHbr_rrPP35KbVO28fLnVGvpeLar5ONl-rj_nbJjFUZoekBikz1tYCkOnMoBWFbqDGWlDeUDQ6N0wzXqDhupUM2qYAZpvG5DbXUGdsRp7Pvns3hCv8QW2H0fVhpaKiYFxOzwYKz5Rxg_fOtmrvul_tjgpBTYSa4lBTHOoSR9A8nTWdtfYfD8E1jE8eRFk-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873591109</pqid></control><display><type>article</type><title>W -Band GaN HEMT Frequency Multipliers</title><source>IEEE Electronic Library (IEL)</source><creator>Sonnenberg, Timothy ; Verploegh, Shane ; Pinto, Mauricio ; Popovic, Zoya</creator><creatorcontrib>Sonnenberg, Timothy ; Verploegh, Shane ; Pinto, Mauricio ; Popovic, Zoya</creatorcontrib><description><![CDATA[This article presents three <inline-formula> <tex-math notation="LaTeX">W</tex-math> </inline-formula>-band frequency multiplier monolithically microwave integrated circuits (MMICs) designed in a 40-nm gallium nitride (GaN) on SiC process. Two doublers with fundamental-frequency input from 37.5 to 55 GHz both use two 4 <inline-formula> <tex-math notation="LaTeX">\times</tex-math> </inline-formula> 37.5 <inline-formula> <tex-math notation="LaTeX">\mu</tex-math> </inline-formula>m HEMTs. One is a single-ended topology with a postmultiplication amplifier, while the other is a balanced power-combining topology with a planar Marchand balun adapted to the passives in the MMIC process. The tripler is a balanced configuration for an input fundamental frequency from 25 to 37 GHz. All designs are stable over a wide range of operating conditions. The single-ended, postamplified doubler shows conversion gain from 80 to 85 GHz with a peak gain of 1.5 dB at 10 dBm of input power and 900 mW of dc power. The balanced doubler MMIC has a conversion gain from about 90 to 100 GHz with a peak gain of 3.8 dB at 100 GHz for an input power of 10 dBm and 500 mW of dc power consumption. Both doublers achieve fundamental-frequency suppression above 55 dBc. The results show that a topology that combines the two doubler approaches in GaN should result in simultaneous conversion gain with higher power and improved fundamental-frequency suppression. The tripler measures an output power of 10 <inline-formula> <tex-math notation="LaTeX">\pm</tex-math> </inline-formula> 1.5 dBm for an input power of 19 dBm from 75 to 110 GHz, with fundamental-and second-harmonic suppressions of 29 and 29.5 dBc, respectively.]]></description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2023.3253185</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>&lt;inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt; &lt;tex-math notation="LaTeX"&gt; W&lt;/tex-math&gt; &lt;/inline-formula&gt;-band ; Broadband ; Circuit design ; Conversion ; doubler ; Frequency conversion ; frequency multiplier ; Frequency multipliers ; Gain ; gallium nitride (GaN) ; Gallium nitrides ; Harmonic analysis ; HEMTs ; High electron mobility transistors ; Integrated circuits ; MMIC (circuits) ; monolithically microwave integrated circuit (MMIC) ; Power consumption ; Power generation ; Power harmonic filters ; Resonant frequencies ; stability ; Topology ; tripler</subject><ispartof>IEEE transactions on microwave theory and techniques, 2023-10, Vol.71 (10), p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-b09943fb8013a4c1e87ad0b1b825d21ca6c3a3571c5af930fd703eddc6e6a0b43</citedby><cites>FETCH-LOGICAL-c294t-b09943fb8013a4c1e87ad0b1b825d21ca6c3a3571c5af930fd703eddc6e6a0b43</cites><orcidid>0000-0001-7651-2254 ; 0000-0002-5246-7468</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10073585$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10073585$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sonnenberg, Timothy</creatorcontrib><creatorcontrib>Verploegh, Shane</creatorcontrib><creatorcontrib>Pinto, Mauricio</creatorcontrib><creatorcontrib>Popovic, Zoya</creatorcontrib><title>W -Band GaN HEMT Frequency Multipliers</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description><![CDATA[This article presents three <inline-formula> <tex-math notation="LaTeX">W</tex-math> </inline-formula>-band frequency multiplier monolithically microwave integrated circuits (MMICs) designed in a 40-nm gallium nitride (GaN) on SiC process. Two doublers with fundamental-frequency input from 37.5 to 55 GHz both use two 4 <inline-formula> <tex-math notation="LaTeX">\times</tex-math> </inline-formula> 37.5 <inline-formula> <tex-math notation="LaTeX">\mu</tex-math> </inline-formula>m HEMTs. One is a single-ended topology with a postmultiplication amplifier, while the other is a balanced power-combining topology with a planar Marchand balun adapted to the passives in the MMIC process. The tripler is a balanced configuration for an input fundamental frequency from 25 to 37 GHz. All designs are stable over a wide range of operating conditions. The single-ended, postamplified doubler shows conversion gain from 80 to 85 GHz with a peak gain of 1.5 dB at 10 dBm of input power and 900 mW of dc power. The balanced doubler MMIC has a conversion gain from about 90 to 100 GHz with a peak gain of 3.8 dB at 100 GHz for an input power of 10 dBm and 500 mW of dc power consumption. Both doublers achieve fundamental-frequency suppression above 55 dBc. The results show that a topology that combines the two doubler approaches in GaN should result in simultaneous conversion gain with higher power and improved fundamental-frequency suppression. The tripler measures an output power of 10 <inline-formula> <tex-math notation="LaTeX">\pm</tex-math> </inline-formula> 1.5 dBm for an input power of 19 dBm from 75 to 110 GHz, with fundamental-and second-harmonic suppressions of 29 and 29.5 dBc, respectively.]]></description><subject>&lt;inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt; &lt;tex-math notation="LaTeX"&gt; W&lt;/tex-math&gt; &lt;/inline-formula&gt;-band</subject><subject>Broadband</subject><subject>Circuit design</subject><subject>Conversion</subject><subject>doubler</subject><subject>Frequency conversion</subject><subject>frequency multiplier</subject><subject>Frequency multipliers</subject><subject>Gain</subject><subject>gallium nitride (GaN)</subject><subject>Gallium nitrides</subject><subject>Harmonic analysis</subject><subject>HEMTs</subject><subject>High electron mobility transistors</subject><subject>Integrated circuits</subject><subject>MMIC (circuits)</subject><subject>monolithically microwave integrated circuit (MMIC)</subject><subject>Power consumption</subject><subject>Power generation</subject><subject>Power harmonic filters</subject><subject>Resonant frequencies</subject><subject>stability</subject><subject>Topology</subject><subject>tripler</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9LxDAQxYMoWFc_gOChIHhrnUmaNjnqsn-ErV4qHkOaptBlbddke9hvvym7B0_DML_3ZuYR8oiQIoJ8rcqqSilQljLKGQp-RSLkvEhkXsA1iQBQJDITcEvuvN-GNuMgIvLyEyfvum_ilf6M14uyipfO_o22N8e4HHeHbr_rrPP35KbVO28fLnVGvpeLar5ONl-rj_nbJjFUZoekBikz1tYCkOnMoBWFbqDGWlDeUDQ6N0wzXqDhupUM2qYAZpvG5DbXUGdsRp7Pvns3hCv8QW2H0fVhpaKiYFxOzwYKz5Rxg_fOtmrvul_tjgpBTYSa4lBTHOoSR9A8nTWdtfYfD8E1jE8eRFk-</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Sonnenberg, Timothy</creator><creator>Verploegh, Shane</creator><creator>Pinto, Mauricio</creator><creator>Popovic, Zoya</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7651-2254</orcidid><orcidid>https://orcid.org/0000-0002-5246-7468</orcidid></search><sort><creationdate>20231001</creationdate><title>W -Band GaN HEMT Frequency Multipliers</title><author>Sonnenberg, Timothy ; Verploegh, Shane ; Pinto, Mauricio ; Popovic, Zoya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-b09943fb8013a4c1e87ad0b1b825d21ca6c3a3571c5af930fd703eddc6e6a0b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>&lt;inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt; &lt;tex-math notation="LaTeX"&gt; W&lt;/tex-math&gt; &lt;/inline-formula&gt;-band</topic><topic>Broadband</topic><topic>Circuit design</topic><topic>Conversion</topic><topic>doubler</topic><topic>Frequency conversion</topic><topic>frequency multiplier</topic><topic>Frequency multipliers</topic><topic>Gain</topic><topic>gallium nitride (GaN)</topic><topic>Gallium nitrides</topic><topic>Harmonic analysis</topic><topic>HEMTs</topic><topic>High electron mobility transistors</topic><topic>Integrated circuits</topic><topic>MMIC (circuits)</topic><topic>monolithically microwave integrated circuit (MMIC)</topic><topic>Power consumption</topic><topic>Power generation</topic><topic>Power harmonic filters</topic><topic>Resonant frequencies</topic><topic>stability</topic><topic>Topology</topic><topic>tripler</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sonnenberg, Timothy</creatorcontrib><creatorcontrib>Verploegh, Shane</creatorcontrib><creatorcontrib>Pinto, Mauricio</creatorcontrib><creatorcontrib>Popovic, Zoya</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sonnenberg, Timothy</au><au>Verploegh, Shane</au><au>Pinto, Mauricio</au><au>Popovic, Zoya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>W -Band GaN HEMT Frequency Multipliers</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>71</volume><issue>10</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract><![CDATA[This article presents three <inline-formula> <tex-math notation="LaTeX">W</tex-math> </inline-formula>-band frequency multiplier monolithically microwave integrated circuits (MMICs) designed in a 40-nm gallium nitride (GaN) on SiC process. Two doublers with fundamental-frequency input from 37.5 to 55 GHz both use two 4 <inline-formula> <tex-math notation="LaTeX">\times</tex-math> </inline-formula> 37.5 <inline-formula> <tex-math notation="LaTeX">\mu</tex-math> </inline-formula>m HEMTs. One is a single-ended topology with a postmultiplication amplifier, while the other is a balanced power-combining topology with a planar Marchand balun adapted to the passives in the MMIC process. The tripler is a balanced configuration for an input fundamental frequency from 25 to 37 GHz. All designs are stable over a wide range of operating conditions. The single-ended, postamplified doubler shows conversion gain from 80 to 85 GHz with a peak gain of 1.5 dB at 10 dBm of input power and 900 mW of dc power. The balanced doubler MMIC has a conversion gain from about 90 to 100 GHz with a peak gain of 3.8 dB at 100 GHz for an input power of 10 dBm and 500 mW of dc power consumption. Both doublers achieve fundamental-frequency suppression above 55 dBc. The results show that a topology that combines the two doubler approaches in GaN should result in simultaneous conversion gain with higher power and improved fundamental-frequency suppression. The tripler measures an output power of 10 <inline-formula> <tex-math notation="LaTeX">\pm</tex-math> </inline-formula> 1.5 dBm for an input power of 19 dBm from 75 to 110 GHz, with fundamental-and second-harmonic suppressions of 29 and 29.5 dBc, respectively.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMTT.2023.3253185</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7651-2254</orcidid><orcidid>https://orcid.org/0000-0002-5246-7468</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9480
ispartof IEEE transactions on microwave theory and techniques, 2023-10, Vol.71 (10), p.1-10
issn 0018-9480
1557-9670
language eng
recordid cdi_crossref_primary_10_1109_TMTT_2023_3253185
source IEEE Electronic Library (IEL)
subjects <inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> W</tex-math> </inline-formula>-band
Broadband
Circuit design
Conversion
doubler
Frequency conversion
frequency multiplier
Frequency multipliers
Gain
gallium nitride (GaN)
Gallium nitrides
Harmonic analysis
HEMTs
High electron mobility transistors
Integrated circuits
MMIC (circuits)
monolithically microwave integrated circuit (MMIC)
Power consumption
Power generation
Power harmonic filters
Resonant frequencies
stability
Topology
tripler
title W -Band GaN HEMT Frequency Multipliers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A56%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=W%20-Band%20GaN%20HEMT%20Frequency%20Multipliers&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Sonnenberg,%20Timothy&rft.date=2023-10-01&rft.volume=71&rft.issue=10&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2023.3253185&rft_dat=%3Cproquest_RIE%3E2873591109%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2873591109&rft_id=info:pmid/&rft_ieee_id=10073585&rfr_iscdi=true