Rough Conductor Modeling Through State-Space Formulation
Based on the state-space formulation, the exact analytical solution of the magnetic-field distribution inside a rough conductor trace is presented. The infinite Dyson's series, a well-known tool for describing the interaction picture of a quantum system in the field of quantum electrodynamics (...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on microwave theory and techniques 2019-12, Vol.67 (12), p.4656-4664 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4664 |
---|---|
container_issue | 12 |
container_start_page | 4656 |
container_title | IEEE transactions on microwave theory and techniques |
container_volume | 67 |
creator | Abdolhamidi, Mostafa Mohammad-Taheri, Mahmoud |
description | Based on the state-space formulation, the exact analytical solution of the magnetic-field distribution inside a rough conductor trace is presented. The infinite Dyson's series, a well-known tool for describing the interaction picture of a quantum system in the field of quantum electrodynamics (QED), is used to derive the magnetic-field evolution inside a rough conductor, starting from the conductor rough surface up to a far distance inside the conductor or equivalently a mathematical infinity. Validity of the obtained values from the first-, second-, and third-order approximations of the proposed series is proven by comparing with very recent research works. In addition, based on the first-order approximation, a very compact matrix identity is presented for the calculation of the state-space evolution matrix. The obtained values of the rough conductor surface impedance from dc up to 100 GHz are in excellent agreement with those obtained by the finite-difference (FD) method and other recently published solutions. |
doi_str_mv | 10.1109/TMTT.2019.2944375 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMTT_2019_2944375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8874967</ieee_id><sourcerecordid>2333538066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-fe48dc2d0031c22a2c361837f597c350305d478d7e74b1ae61aa5d03551ff6943</originalsourceid><addsrcrecordid>eNo9kMFKAzEQhoMoWKsPIF4WPG-dZJJNcpRiq9Ai2PUcYpJtt7Sbmt09-PZubfE0_Mz3z8BHyD2FCaWgn8plWU4YUD1hmnOU4oKMqBAy14WESzICoCrXXME1uWnb7RC5ADUi6iP26002jY3vXRdTtow-7OpmnZWb9LdadbYL-epgXchmMe37ne3q2NySq8ru2nB3nmPyOXspp6_54n3-Nn1e5I5p7PIqcOUd8wBIHWOWOSyoQlkJLR0KQBCeS-VlkPyL2lBQa4UHFIJWVaE5jsnj6e4hxe8-tJ3Zxj41w0vDEFGggqIYKHqiXIptm0JlDqne2_RjKJijIHMUZI6CzFnQ0Hk4deoQwj-vlOSDM_wFpi5gQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333538066</pqid></control><display><type>article</type><title>Rough Conductor Modeling Through State-Space Formulation</title><source>IEEE Electronic Library (IEL)</source><creator>Abdolhamidi, Mostafa ; Mohammad-Taheri, Mahmoud</creator><creatorcontrib>Abdolhamidi, Mostafa ; Mohammad-Taheri, Mahmoud</creatorcontrib><description>Based on the state-space formulation, the exact analytical solution of the magnetic-field distribution inside a rough conductor trace is presented. The infinite Dyson's series, a well-known tool for describing the interaction picture of a quantum system in the field of quantum electrodynamics (QED), is used to derive the magnetic-field evolution inside a rough conductor, starting from the conductor rough surface up to a far distance inside the conductor or equivalently a mathematical infinity. Validity of the obtained values from the first-, second-, and third-order approximations of the proposed series is proven by comparing with very recent research works. In addition, based on the first-order approximation, a very compact matrix identity is presented for the calculation of the state-space evolution matrix. The obtained values of the rough conductor surface impedance from dc up to 100 GHz are in excellent agreement with those obtained by the finite-difference (FD) method and other recently published solutions.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2019.2944375</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Conductivity ; Conductors ; Evolution ; Exact solutions ; Finite difference method ; Gradient model ; Impedance ; Mathematical model ; Matrix methods ; millimeter-waves ; Quantum electrodynamics ; Quantum theory ; rough conductor surface ; Rough surfaces ; state-space model ; Surface impedance ; Surface roughness</subject><ispartof>IEEE transactions on microwave theory and techniques, 2019-12, Vol.67 (12), p.4656-4664</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-fe48dc2d0031c22a2c361837f597c350305d478d7e74b1ae61aa5d03551ff6943</citedby><cites>FETCH-LOGICAL-c293t-fe48dc2d0031c22a2c361837f597c350305d478d7e74b1ae61aa5d03551ff6943</cites><orcidid>0000-0002-3304-1031 ; 0000-0002-6971-9270</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8874967$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8874967$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Abdolhamidi, Mostafa</creatorcontrib><creatorcontrib>Mohammad-Taheri, Mahmoud</creatorcontrib><title>Rough Conductor Modeling Through State-Space Formulation</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>Based on the state-space formulation, the exact analytical solution of the magnetic-field distribution inside a rough conductor trace is presented. The infinite Dyson's series, a well-known tool for describing the interaction picture of a quantum system in the field of quantum electrodynamics (QED), is used to derive the magnetic-field evolution inside a rough conductor, starting from the conductor rough surface up to a far distance inside the conductor or equivalently a mathematical infinity. Validity of the obtained values from the first-, second-, and third-order approximations of the proposed series is proven by comparing with very recent research works. In addition, based on the first-order approximation, a very compact matrix identity is presented for the calculation of the state-space evolution matrix. The obtained values of the rough conductor surface impedance from dc up to 100 GHz are in excellent agreement with those obtained by the finite-difference (FD) method and other recently published solutions.</description><subject>Conductivity</subject><subject>Conductors</subject><subject>Evolution</subject><subject>Exact solutions</subject><subject>Finite difference method</subject><subject>Gradient model</subject><subject>Impedance</subject><subject>Mathematical model</subject><subject>Matrix methods</subject><subject>millimeter-waves</subject><subject>Quantum electrodynamics</subject><subject>Quantum theory</subject><subject>rough conductor surface</subject><subject>Rough surfaces</subject><subject>state-space model</subject><subject>Surface impedance</subject><subject>Surface roughness</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFKAzEQhoMoWKsPIF4WPG-dZJJNcpRiq9Ai2PUcYpJtt7Sbmt09-PZubfE0_Mz3z8BHyD2FCaWgn8plWU4YUD1hmnOU4oKMqBAy14WESzICoCrXXME1uWnb7RC5ADUi6iP26002jY3vXRdTtow-7OpmnZWb9LdadbYL-epgXchmMe37ne3q2NySq8ru2nB3nmPyOXspp6_54n3-Nn1e5I5p7PIqcOUd8wBIHWOWOSyoQlkJLR0KQBCeS-VlkPyL2lBQa4UHFIJWVaE5jsnj6e4hxe8-tJ3Zxj41w0vDEFGggqIYKHqiXIptm0JlDqne2_RjKJijIHMUZI6CzFnQ0Hk4deoQwj-vlOSDM_wFpi5gQA</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Abdolhamidi, Mostafa</creator><creator>Mohammad-Taheri, Mahmoud</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3304-1031</orcidid><orcidid>https://orcid.org/0000-0002-6971-9270</orcidid></search><sort><creationdate>20191201</creationdate><title>Rough Conductor Modeling Through State-Space Formulation</title><author>Abdolhamidi, Mostafa ; Mohammad-Taheri, Mahmoud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-fe48dc2d0031c22a2c361837f597c350305d478d7e74b1ae61aa5d03551ff6943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Conductivity</topic><topic>Conductors</topic><topic>Evolution</topic><topic>Exact solutions</topic><topic>Finite difference method</topic><topic>Gradient model</topic><topic>Impedance</topic><topic>Mathematical model</topic><topic>Matrix methods</topic><topic>millimeter-waves</topic><topic>Quantum electrodynamics</topic><topic>Quantum theory</topic><topic>rough conductor surface</topic><topic>Rough surfaces</topic><topic>state-space model</topic><topic>Surface impedance</topic><topic>Surface roughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdolhamidi, Mostafa</creatorcontrib><creatorcontrib>Mohammad-Taheri, Mahmoud</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abdolhamidi, Mostafa</au><au>Mohammad-Taheri, Mahmoud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rough Conductor Modeling Through State-Space Formulation</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>67</volume><issue>12</issue><spage>4656</spage><epage>4664</epage><pages>4656-4664</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>Based on the state-space formulation, the exact analytical solution of the magnetic-field distribution inside a rough conductor trace is presented. The infinite Dyson's series, a well-known tool for describing the interaction picture of a quantum system in the field of quantum electrodynamics (QED), is used to derive the magnetic-field evolution inside a rough conductor, starting from the conductor rough surface up to a far distance inside the conductor or equivalently a mathematical infinity. Validity of the obtained values from the first-, second-, and third-order approximations of the proposed series is proven by comparing with very recent research works. In addition, based on the first-order approximation, a very compact matrix identity is presented for the calculation of the state-space evolution matrix. The obtained values of the rough conductor surface impedance from dc up to 100 GHz are in excellent agreement with those obtained by the finite-difference (FD) method and other recently published solutions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMTT.2019.2944375</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3304-1031</orcidid><orcidid>https://orcid.org/0000-0002-6971-9270</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9480 |
ispartof | IEEE transactions on microwave theory and techniques, 2019-12, Vol.67 (12), p.4656-4664 |
issn | 0018-9480 1557-9670 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMTT_2019_2944375 |
source | IEEE Electronic Library (IEL) |
subjects | Conductivity Conductors Evolution Exact solutions Finite difference method Gradient model Impedance Mathematical model Matrix methods millimeter-waves Quantum electrodynamics Quantum theory rough conductor surface Rough surfaces state-space model Surface impedance Surface roughness |
title | Rough Conductor Modeling Through State-Space Formulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A08%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rough%20Conductor%20Modeling%20Through%20State-Space%20Formulation&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Abdolhamidi,%20Mostafa&rft.date=2019-12-01&rft.volume=67&rft.issue=12&rft.spage=4656&rft.epage=4664&rft.pages=4656-4664&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2019.2944375&rft_dat=%3Cproquest_RIE%3E2333538066%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2333538066&rft_id=info:pmid/&rft_ieee_id=8874967&rfr_iscdi=true |