Nonreciprocal Components Based on Switched Transmission Lines
Nonreciprocal components, such as isolators and circulators, are critical to wireless communication and radar applications. Traditionally, nonreciprocal components have been implemented using ferrite materials, which exhibit nonreciprocity under the influence of an external magnetic field. However,...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on microwave theory and techniques 2018-11, Vol.66 (11), p.4706-4725 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4725 |
---|---|
container_issue | 11 |
container_start_page | 4706 |
container_title | IEEE transactions on microwave theory and techniques |
container_volume | 66 |
creator | Nagulu, Aravind Dinc, Tolga Xiao, Zhicheng Tymchenko, Mykhailo Sounas, Dimitrios L. Alu, Andrea Krishnaswamy, Harish |
description | Nonreciprocal components, such as isolators and circulators, are critical to wireless communication and radar applications. Traditionally, nonreciprocal components have been implemented using ferrite materials, which exhibit nonreciprocity under the influence of an external magnetic field. However, ferrite materials cannot be integrated into IC fabrication processes and, consequently, are bulky and expensive. In the recent past, there has been strong interest in achieving nonreciprocity in a nonmagnetic IC-compatible fashion using spatio-temporal modulation. In this paper, we present a general approach to nonreciprocity based on switched transmission lines. Switched transmission lines enable broadband, lossless, and compact nonreciprocity and a wide range of nonreciprocal functionalities, including nonreciprocal phase shifters, ultra-broadband gyrators and isolators, frequency-conversion isolators, and high-linearity/high-frequency/ultra-broadband circulators. We present a detailed theoretical analysis of the various nonidealities that impact insertion loss and provide design guidelines. The theory is validated by experimental results from discrete-component-based gyrators and isolators and a 25-GHz circulator fabricated in a 45-nm SOI CMOS technology. |
doi_str_mv | 10.1109/TMTT.2018.2859244 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMTT_2018_2859244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8435969</ieee_id><sourcerecordid>2130611890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-ccbc5aff149c02d788e30b2c0a22bd867fa6d7fd36fe442a0540ea60e95373c3</originalsourceid><addsrcrecordid>eNo9kMtKAzEUhoMoWC8PIG4GXE89uU6ycKHFG1RdOPuQZhJMaZOaTBHf3pQWV-f2_-ccPoSuMEwxBnXbv_X9lACWUyK5IowdoQnmvGuV6OAYTaCOWsUknKKzUpa1ZBzkBN29p5idDZucrFk1s7TepOjiWJoHU9zQpNh8_oTRftW8zyaWdSgl1O48RFcu0Ik3q-IuD_Ec9U-P_eylnX88v87u560lio6ttQvLjfeYKQtk6KR0FBbEgiFkMUjReSOGzg9UeMcYMcAZOCPAKU47auk5utmvrV9-b10Z9TJtc6wXNcEUBMZSQVXhvcrmVEp2Xm9yWJv8qzHoHSS9g6R3kPQBUvVc7z3BOfevl4xyJRT9A6XJY0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2130611890</pqid></control><display><type>article</type><title>Nonreciprocal Components Based on Switched Transmission Lines</title><source>IEEE Electronic Library (IEL)</source><creator>Nagulu, Aravind ; Dinc, Tolga ; Xiao, Zhicheng ; Tymchenko, Mykhailo ; Sounas, Dimitrios L. ; Alu, Andrea ; Krishnaswamy, Harish</creator><creatorcontrib>Nagulu, Aravind ; Dinc, Tolga ; Xiao, Zhicheng ; Tymchenko, Mykhailo ; Sounas, Dimitrios L. ; Alu, Andrea ; Krishnaswamy, Harish</creatorcontrib><description>Nonreciprocal components, such as isolators and circulators, are critical to wireless communication and radar applications. Traditionally, nonreciprocal components have been implemented using ferrite materials, which exhibit nonreciprocity under the influence of an external magnetic field. However, ferrite materials cannot be integrated into IC fabrication processes and, consequently, are bulky and expensive. In the recent past, there has been strong interest in achieving nonreciprocity in a nonmagnetic IC-compatible fashion using spatio-temporal modulation. In this paper, we present a general approach to nonreciprocity based on switched transmission lines. Switched transmission lines enable broadband, lossless, and compact nonreciprocity and a wide range of nonreciprocal functionalities, including nonreciprocal phase shifters, ultra-broadband gyrators and isolators, frequency-conversion isolators, and high-linearity/high-frequency/ultra-broadband circulators. We present a detailed theoretical analysis of the various nonidealities that impact insertion loss and provide design guidelines. The theory is validated by experimental results from discrete-component-based gyrators and isolators and a 25-GHz circulator fabricated in a 45-nm SOI CMOS technology.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2018.2859244</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Broadband ; Circulators ; CMOS ; Ferrites ; Frequency modulation ; full duplex ; Gyrators ; Insertion loss ; Isolators ; linear periodically time-varying (LPTV) circuits ; Linearity ; millimeter-wave passive components ; nonreciprocity ; Phase shifters ; Power transmission lines ; radars ; Switches ; Transmission lines ; ultra-wideband (UWB) communication ; UWB circuit techniques ; Wireless communications</subject><ispartof>IEEE transactions on microwave theory and techniques, 2018-11, Vol.66 (11), p.4706-4725</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-ccbc5aff149c02d788e30b2c0a22bd867fa6d7fd36fe442a0540ea60e95373c3</citedby><cites>FETCH-LOGICAL-c293t-ccbc5aff149c02d788e30b2c0a22bd867fa6d7fd36fe442a0540ea60e95373c3</cites><orcidid>0000-0002-1481-6137 ; 0000-0002-9027-3058 ; 0000-0002-4297-5274 ; 0000-0001-5968-7490 ; 0000-0002-6325-8872 ; 0000-0002-3010-0825</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8435969$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8435969$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nagulu, Aravind</creatorcontrib><creatorcontrib>Dinc, Tolga</creatorcontrib><creatorcontrib>Xiao, Zhicheng</creatorcontrib><creatorcontrib>Tymchenko, Mykhailo</creatorcontrib><creatorcontrib>Sounas, Dimitrios L.</creatorcontrib><creatorcontrib>Alu, Andrea</creatorcontrib><creatorcontrib>Krishnaswamy, Harish</creatorcontrib><title>Nonreciprocal Components Based on Switched Transmission Lines</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>Nonreciprocal components, such as isolators and circulators, are critical to wireless communication and radar applications. Traditionally, nonreciprocal components have been implemented using ferrite materials, which exhibit nonreciprocity under the influence of an external magnetic field. However, ferrite materials cannot be integrated into IC fabrication processes and, consequently, are bulky and expensive. In the recent past, there has been strong interest in achieving nonreciprocity in a nonmagnetic IC-compatible fashion using spatio-temporal modulation. In this paper, we present a general approach to nonreciprocity based on switched transmission lines. Switched transmission lines enable broadband, lossless, and compact nonreciprocity and a wide range of nonreciprocal functionalities, including nonreciprocal phase shifters, ultra-broadband gyrators and isolators, frequency-conversion isolators, and high-linearity/high-frequency/ultra-broadband circulators. We present a detailed theoretical analysis of the various nonidealities that impact insertion loss and provide design guidelines. The theory is validated by experimental results from discrete-component-based gyrators and isolators and a 25-GHz circulator fabricated in a 45-nm SOI CMOS technology.</description><subject>Broadband</subject><subject>Circulators</subject><subject>CMOS</subject><subject>Ferrites</subject><subject>Frequency modulation</subject><subject>full duplex</subject><subject>Gyrators</subject><subject>Insertion loss</subject><subject>Isolators</subject><subject>linear periodically time-varying (LPTV) circuits</subject><subject>Linearity</subject><subject>millimeter-wave passive components</subject><subject>nonreciprocity</subject><subject>Phase shifters</subject><subject>Power transmission lines</subject><subject>radars</subject><subject>Switches</subject><subject>Transmission lines</subject><subject>ultra-wideband (UWB) communication</subject><subject>UWB circuit techniques</subject><subject>Wireless communications</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtKAzEUhoMoWC8PIG4GXE89uU6ycKHFG1RdOPuQZhJMaZOaTBHf3pQWV-f2_-ccPoSuMEwxBnXbv_X9lACWUyK5IowdoQnmvGuV6OAYTaCOWsUknKKzUpa1ZBzkBN29p5idDZucrFk1s7TepOjiWJoHU9zQpNh8_oTRftW8zyaWdSgl1O48RFcu0Ik3q-IuD_Ec9U-P_eylnX88v87u560lio6ttQvLjfeYKQtk6KR0FBbEgiFkMUjReSOGzg9UeMcYMcAZOCPAKU47auk5utmvrV9-b10Z9TJtc6wXNcEUBMZSQVXhvcrmVEp2Xm9yWJv8qzHoHSS9g6R3kPQBUvVc7z3BOfevl4xyJRT9A6XJY0A</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Nagulu, Aravind</creator><creator>Dinc, Tolga</creator><creator>Xiao, Zhicheng</creator><creator>Tymchenko, Mykhailo</creator><creator>Sounas, Dimitrios L.</creator><creator>Alu, Andrea</creator><creator>Krishnaswamy, Harish</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1481-6137</orcidid><orcidid>https://orcid.org/0000-0002-9027-3058</orcidid><orcidid>https://orcid.org/0000-0002-4297-5274</orcidid><orcidid>https://orcid.org/0000-0001-5968-7490</orcidid><orcidid>https://orcid.org/0000-0002-6325-8872</orcidid><orcidid>https://orcid.org/0000-0002-3010-0825</orcidid></search><sort><creationdate>20181101</creationdate><title>Nonreciprocal Components Based on Switched Transmission Lines</title><author>Nagulu, Aravind ; Dinc, Tolga ; Xiao, Zhicheng ; Tymchenko, Mykhailo ; Sounas, Dimitrios L. ; Alu, Andrea ; Krishnaswamy, Harish</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-ccbc5aff149c02d788e30b2c0a22bd867fa6d7fd36fe442a0540ea60e95373c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Broadband</topic><topic>Circulators</topic><topic>CMOS</topic><topic>Ferrites</topic><topic>Frequency modulation</topic><topic>full duplex</topic><topic>Gyrators</topic><topic>Insertion loss</topic><topic>Isolators</topic><topic>linear periodically time-varying (LPTV) circuits</topic><topic>Linearity</topic><topic>millimeter-wave passive components</topic><topic>nonreciprocity</topic><topic>Phase shifters</topic><topic>Power transmission lines</topic><topic>radars</topic><topic>Switches</topic><topic>Transmission lines</topic><topic>ultra-wideband (UWB) communication</topic><topic>UWB circuit techniques</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagulu, Aravind</creatorcontrib><creatorcontrib>Dinc, Tolga</creatorcontrib><creatorcontrib>Xiao, Zhicheng</creatorcontrib><creatorcontrib>Tymchenko, Mykhailo</creatorcontrib><creatorcontrib>Sounas, Dimitrios L.</creatorcontrib><creatorcontrib>Alu, Andrea</creatorcontrib><creatorcontrib>Krishnaswamy, Harish</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nagulu, Aravind</au><au>Dinc, Tolga</au><au>Xiao, Zhicheng</au><au>Tymchenko, Mykhailo</au><au>Sounas, Dimitrios L.</au><au>Alu, Andrea</au><au>Krishnaswamy, Harish</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonreciprocal Components Based on Switched Transmission Lines</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>66</volume><issue>11</issue><spage>4706</spage><epage>4725</epage><pages>4706-4725</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>Nonreciprocal components, such as isolators and circulators, are critical to wireless communication and radar applications. Traditionally, nonreciprocal components have been implemented using ferrite materials, which exhibit nonreciprocity under the influence of an external magnetic field. However, ferrite materials cannot be integrated into IC fabrication processes and, consequently, are bulky and expensive. In the recent past, there has been strong interest in achieving nonreciprocity in a nonmagnetic IC-compatible fashion using spatio-temporal modulation. In this paper, we present a general approach to nonreciprocity based on switched transmission lines. Switched transmission lines enable broadband, lossless, and compact nonreciprocity and a wide range of nonreciprocal functionalities, including nonreciprocal phase shifters, ultra-broadband gyrators and isolators, frequency-conversion isolators, and high-linearity/high-frequency/ultra-broadband circulators. We present a detailed theoretical analysis of the various nonidealities that impact insertion loss and provide design guidelines. The theory is validated by experimental results from discrete-component-based gyrators and isolators and a 25-GHz circulator fabricated in a 45-nm SOI CMOS technology.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMTT.2018.2859244</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-1481-6137</orcidid><orcidid>https://orcid.org/0000-0002-9027-3058</orcidid><orcidid>https://orcid.org/0000-0002-4297-5274</orcidid><orcidid>https://orcid.org/0000-0001-5968-7490</orcidid><orcidid>https://orcid.org/0000-0002-6325-8872</orcidid><orcidid>https://orcid.org/0000-0002-3010-0825</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9480 |
ispartof | IEEE transactions on microwave theory and techniques, 2018-11, Vol.66 (11), p.4706-4725 |
issn | 0018-9480 1557-9670 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMTT_2018_2859244 |
source | IEEE Electronic Library (IEL) |
subjects | Broadband Circulators CMOS Ferrites Frequency modulation full duplex Gyrators Insertion loss Isolators linear periodically time-varying (LPTV) circuits Linearity millimeter-wave passive components nonreciprocity Phase shifters Power transmission lines radars Switches Transmission lines ultra-wideband (UWB) communication UWB circuit techniques Wireless communications |
title | Nonreciprocal Components Based on Switched Transmission Lines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T12%3A52%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonreciprocal%20Components%20Based%20on%20Switched%20Transmission%20Lines&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Nagulu,%20Aravind&rft.date=2018-11-01&rft.volume=66&rft.issue=11&rft.spage=4706&rft.epage=4725&rft.pages=4706-4725&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2018.2859244&rft_dat=%3Cproquest_RIE%3E2130611890%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2130611890&rft_id=info:pmid/&rft_ieee_id=8435969&rfr_iscdi=true |