Low Computational Complexity Digital Predistortion Based on Direct Learning With Covariance Matrix
This paper proposes a novel approach for digital predistortion, based on direct learning architecture (DLA), to reduce the computational complexity. In power amplifier (PA) behavioral models, the coefficients of a Volterra polynomial or a simplified Volterra polynomial are extracted by calculating t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on microwave theory and techniques 2017-11, Vol.65 (11), p.4274-4284 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4284 |
---|---|
container_issue | 11 |
container_start_page | 4274 |
container_title | IEEE transactions on microwave theory and techniques |
container_volume | 65 |
creator | Zonghao Wang Wenhua Chen Gongzhe Su Ghannouchi, Fadhel M. Zhenghe Feng Yuanan Liu |
description | This paper proposes a novel approach for digital predistortion, based on direct learning architecture (DLA), to reduce the computational complexity. In power amplifier (PA) behavioral models, the coefficients of a Volterra polynomial or a simplified Volterra polynomial are extracted by calculating the inverse of a time-varying matrix, which is resource-consuming, time-consuming, and power-consuming due to its matrix dimension and inverse operation in a field-programmable gate array. To speed up the computation and save hardware resources, we propose a low computational complexity DLA with covariance matrix that uses the constant covariance matrix to replace the time-varying input signal filled matrix based on a stationary ergodic random process. To verify the proposed method, it was applied to a wideband Doherty gallium nitride (GaN) PA at 2.6 GHz with a 40-MHz orthogonal frequency division multiplexing signal, and to a dual-band Doherty GaN PA at 1.9 and 2.6 GHz with two 20-MHz long-term evolution signals. Experimental results show that the proposed algorithm achieves almost the same performance as the traditional approach, with less than one fifth of the computational quantity. |
doi_str_mv | 10.1109/TMTT.2017.2690290 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMTT_2017_2690290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7915706</ieee_id><sourcerecordid>2174385215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-5ad3726c7c01937e72bfe638988af3ddb8fe393e253638e3d3448d97c9e2ec173</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EEqXwAxCXSJxT_Ihj-wjlKaWCQxBHy3U2xVXbFNuF9t_j0IrT7oxmVtoPoUuCR4RgdVNP6npEMREjWipMFT5CA8K5yFUp8DEaYExkrgqJT9FZCPMkC47lAE2r7icbd8v1JproupVZ_KkFbF3cZfdu5mKy3jw0LsTO95HszgRosrTcOw82ZhUYv3KrWfbh4meqfxvvzMpCNjHRu-05OmnNIsDFYQ7R--NDPX7Oq9enl_FtlVuqWMy5aZigpRUWE8UECDptoWRSSWla1jRT2QJTDChnyQXWsKKQjRJWAQVLBBui6_3dte--NhCinncbnz4KmhJRMMkp4SlF9inruxA8tHrt3dL4nSZY9yh1j1L3KPUBZepc7TsOAP7zQhEucMl-AZslcHc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174385215</pqid></control><display><type>article</type><title>Low Computational Complexity Digital Predistortion Based on Direct Learning With Covariance Matrix</title><source>IEEE Electronic Library (IEL)</source><creator>Zonghao Wang ; Wenhua Chen ; Gongzhe Su ; Ghannouchi, Fadhel M. ; Zhenghe Feng ; Yuanan Liu</creator><creatorcontrib>Zonghao Wang ; Wenhua Chen ; Gongzhe Su ; Ghannouchi, Fadhel M. ; Zhenghe Feng ; Yuanan Liu</creatorcontrib><description>This paper proposes a novel approach for digital predistortion, based on direct learning architecture (DLA), to reduce the computational complexity. In power amplifier (PA) behavioral models, the coefficients of a Volterra polynomial or a simplified Volterra polynomial are extracted by calculating the inverse of a time-varying matrix, which is resource-consuming, time-consuming, and power-consuming due to its matrix dimension and inverse operation in a field-programmable gate array. To speed up the computation and save hardware resources, we propose a low computational complexity DLA with covariance matrix that uses the constant covariance matrix to replace the time-varying input signal filled matrix based on a stationary ergodic random process. To verify the proposed method, it was applied to a wideband Doherty gallium nitride (GaN) PA at 2.6 GHz with a 40-MHz orthogonal frequency division multiplexing signal, and to a dual-band Doherty GaN PA at 1.9 and 2.6 GHz with two 20-MHz long-term evolution signals. Experimental results show that the proposed algorithm achieves almost the same performance as the traditional approach, with less than one fifth of the computational quantity.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2017.2690290</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Broadband ; Complexity ; Computation ; Computational complexity ; Computational modeling ; computational quantity ; Computer architecture ; convergence rate ; Covariance matrices ; Covariance matrix ; Dual band ; Field programmable gate arrays ; Gallium nitrides ; Mathematical model ; Orthogonal Frequency Division Multiplexing ; Polynomials ; Power amplifiers ; Power consumption ; Signal processing ; standard deviation</subject><ispartof>IEEE transactions on microwave theory and techniques, 2017-11, Vol.65 (11), p.4274-4284</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-5ad3726c7c01937e72bfe638988af3ddb8fe393e253638e3d3448d97c9e2ec173</citedby><cites>FETCH-LOGICAL-c293t-5ad3726c7c01937e72bfe638988af3ddb8fe393e253638e3d3448d97c9e2ec173</cites><orcidid>0000-0002-9542-8709</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7915706$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7915706$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zonghao Wang</creatorcontrib><creatorcontrib>Wenhua Chen</creatorcontrib><creatorcontrib>Gongzhe Su</creatorcontrib><creatorcontrib>Ghannouchi, Fadhel M.</creatorcontrib><creatorcontrib>Zhenghe Feng</creatorcontrib><creatorcontrib>Yuanan Liu</creatorcontrib><title>Low Computational Complexity Digital Predistortion Based on Direct Learning With Covariance Matrix</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>This paper proposes a novel approach for digital predistortion, based on direct learning architecture (DLA), to reduce the computational complexity. In power amplifier (PA) behavioral models, the coefficients of a Volterra polynomial or a simplified Volterra polynomial are extracted by calculating the inverse of a time-varying matrix, which is resource-consuming, time-consuming, and power-consuming due to its matrix dimension and inverse operation in a field-programmable gate array. To speed up the computation and save hardware resources, we propose a low computational complexity DLA with covariance matrix that uses the constant covariance matrix to replace the time-varying input signal filled matrix based on a stationary ergodic random process. To verify the proposed method, it was applied to a wideband Doherty gallium nitride (GaN) PA at 2.6 GHz with a 40-MHz orthogonal frequency division multiplexing signal, and to a dual-band Doherty GaN PA at 1.9 and 2.6 GHz with two 20-MHz long-term evolution signals. Experimental results show that the proposed algorithm achieves almost the same performance as the traditional approach, with less than one fifth of the computational quantity.</description><subject>Broadband</subject><subject>Complexity</subject><subject>Computation</subject><subject>Computational complexity</subject><subject>Computational modeling</subject><subject>computational quantity</subject><subject>Computer architecture</subject><subject>convergence rate</subject><subject>Covariance matrices</subject><subject>Covariance matrix</subject><subject>Dual band</subject><subject>Field programmable gate arrays</subject><subject>Gallium nitrides</subject><subject>Mathematical model</subject><subject>Orthogonal Frequency Division Multiplexing</subject><subject>Polynomials</subject><subject>Power amplifiers</subject><subject>Power consumption</subject><subject>Signal processing</subject><subject>standard deviation</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPwzAQhC0EEqXwAxCXSJxT_Ihj-wjlKaWCQxBHy3U2xVXbFNuF9t_j0IrT7oxmVtoPoUuCR4RgdVNP6npEMREjWipMFT5CA8K5yFUp8DEaYExkrgqJT9FZCPMkC47lAE2r7icbd8v1JproupVZ_KkFbF3cZfdu5mKy3jw0LsTO95HszgRosrTcOw82ZhUYv3KrWfbh4meqfxvvzMpCNjHRu-05OmnNIsDFYQ7R--NDPX7Oq9enl_FtlVuqWMy5aZigpRUWE8UECDptoWRSSWla1jRT2QJTDChnyQXWsKKQjRJWAQVLBBui6_3dte--NhCinncbnz4KmhJRMMkp4SlF9inruxA8tHrt3dL4nSZY9yh1j1L3KPUBZepc7TsOAP7zQhEucMl-AZslcHc</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Zonghao Wang</creator><creator>Wenhua Chen</creator><creator>Gongzhe Su</creator><creator>Ghannouchi, Fadhel M.</creator><creator>Zhenghe Feng</creator><creator>Yuanan Liu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9542-8709</orcidid></search><sort><creationdate>201711</creationdate><title>Low Computational Complexity Digital Predistortion Based on Direct Learning With Covariance Matrix</title><author>Zonghao Wang ; Wenhua Chen ; Gongzhe Su ; Ghannouchi, Fadhel M. ; Zhenghe Feng ; Yuanan Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-5ad3726c7c01937e72bfe638988af3ddb8fe393e253638e3d3448d97c9e2ec173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Broadband</topic><topic>Complexity</topic><topic>Computation</topic><topic>Computational complexity</topic><topic>Computational modeling</topic><topic>computational quantity</topic><topic>Computer architecture</topic><topic>convergence rate</topic><topic>Covariance matrices</topic><topic>Covariance matrix</topic><topic>Dual band</topic><topic>Field programmable gate arrays</topic><topic>Gallium nitrides</topic><topic>Mathematical model</topic><topic>Orthogonal Frequency Division Multiplexing</topic><topic>Polynomials</topic><topic>Power amplifiers</topic><topic>Power consumption</topic><topic>Signal processing</topic><topic>standard deviation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zonghao Wang</creatorcontrib><creatorcontrib>Wenhua Chen</creatorcontrib><creatorcontrib>Gongzhe Su</creatorcontrib><creatorcontrib>Ghannouchi, Fadhel M.</creatorcontrib><creatorcontrib>Zhenghe Feng</creatorcontrib><creatorcontrib>Yuanan Liu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zonghao Wang</au><au>Wenhua Chen</au><au>Gongzhe Su</au><au>Ghannouchi, Fadhel M.</au><au>Zhenghe Feng</au><au>Yuanan Liu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low Computational Complexity Digital Predistortion Based on Direct Learning With Covariance Matrix</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2017-11</date><risdate>2017</risdate><volume>65</volume><issue>11</issue><spage>4274</spage><epage>4284</epage><pages>4274-4284</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>This paper proposes a novel approach for digital predistortion, based on direct learning architecture (DLA), to reduce the computational complexity. In power amplifier (PA) behavioral models, the coefficients of a Volterra polynomial or a simplified Volterra polynomial are extracted by calculating the inverse of a time-varying matrix, which is resource-consuming, time-consuming, and power-consuming due to its matrix dimension and inverse operation in a field-programmable gate array. To speed up the computation and save hardware resources, we propose a low computational complexity DLA with covariance matrix that uses the constant covariance matrix to replace the time-varying input signal filled matrix based on a stationary ergodic random process. To verify the proposed method, it was applied to a wideband Doherty gallium nitride (GaN) PA at 2.6 GHz with a 40-MHz orthogonal frequency division multiplexing signal, and to a dual-band Doherty GaN PA at 1.9 and 2.6 GHz with two 20-MHz long-term evolution signals. Experimental results show that the proposed algorithm achieves almost the same performance as the traditional approach, with less than one fifth of the computational quantity.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMTT.2017.2690290</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9542-8709</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9480 |
ispartof | IEEE transactions on microwave theory and techniques, 2017-11, Vol.65 (11), p.4274-4284 |
issn | 0018-9480 1557-9670 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMTT_2017_2690290 |
source | IEEE Electronic Library (IEL) |
subjects | Broadband Complexity Computation Computational complexity Computational modeling computational quantity Computer architecture convergence rate Covariance matrices Covariance matrix Dual band Field programmable gate arrays Gallium nitrides Mathematical model Orthogonal Frequency Division Multiplexing Polynomials Power amplifiers Power consumption Signal processing standard deviation |
title | Low Computational Complexity Digital Predistortion Based on Direct Learning With Covariance Matrix |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A14%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20Computational%20Complexity%20Digital%20Predistortion%20Based%20on%20Direct%20Learning%20With%20Covariance%20Matrix&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Zonghao%20Wang&rft.date=2017-11&rft.volume=65&rft.issue=11&rft.spage=4274&rft.epage=4284&rft.pages=4274-4284&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2017.2690290&rft_dat=%3Cproquest_RIE%3E2174385215%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174385215&rft_id=info:pmid/&rft_ieee_id=7915706&rfr_iscdi=true |