Numerical and Experimental Millimeter-Wave Dosimetry for In Vitro Experiments
This paper provides extensive dosimetry data for in vitro experiments regarding the biological effects of millimeter waves. Two particular frequency ranges have been considered, which are: (1) the 57-64-GHz frequency range dedicated to near-future applications in high-speed wireless communication sy...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on microwave theory and techniques 2008-12, Vol.56 (12), p.2998-3007 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3007 |
---|---|
container_issue | 12 |
container_start_page | 2998 |
container_title | IEEE transactions on microwave theory and techniques |
container_volume | 56 |
creator | Zhadobov, M. Sauleau, R. Le Drean, Y. Alekseev, S.I. Ziskin, M.C. |
description | This paper provides extensive dosimetry data for in vitro experiments regarding the biological effects of millimeter waves. Two particular frequency ranges have been considered, which are: (1) the 57-64-GHz frequency range dedicated to near-future applications in high-speed wireless communication systems and (2) the discrete frequencies used in millimeter-wave therapy, namely, 42.25, 53.57, and 61.22 GHz. The dielectric properties of keratinocyte cells and culture media were determined using permittivity data of free water and Maxwell's mixture equation. The local specific absorption rate (SAR) distribution within the cell monolayer located in a standard tissue culture plate was computed using the finite-element method and the finite-integration technique. The averaged near-surface SAR for the cell monolayer was determined using both numerical electric-field-based and experimental temperature-based approaches. The SAR was computed taking into account physiological variations of the water content in the keratinocyte cells, as well as variations in the cell monolayer thickness. Experimental and computational results are shown to be in very good agreement. |
doi_str_mv | 10.1109/TMTT.2008.2006797 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMTT_2008_2006797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4682594</ieee_id><sourcerecordid>2321717681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-69e31d7af57d743e6222eb328318fa2dc1071585f7eb4faf43b24743b6069ec73</originalsourceid><addsrcrecordid>eNpdkV1LwzAUhoMoOKc_QLwpgogXnfls0ssxpxtselP1MqRdgh1dM5N2uH9vSscQb5Kck-c9h3NeAK4RHCEE08dsmWUjDKHojoSn_AQMEGM8ThMOT8EAQiTilAp4Di68X4eQMigGYPnabrQrC1VFql5F059tiDa6bkJiWVZVeDfaxZ9qp6Mn67vQ7SNjXTSvo4-ycfaPxl-CM6Mqr68O9xC8P0-zySxevL3MJ-NFXBAhmjhJNUErrgzjK06JTjDGOidYECSMwqsCQY6YYIbrnBplKMkxDWCewCAtOBmCh77ul6rkNjRXbi-tKuVsvJBdDkLCEsTIDgX2vme3zn632jdyU_pCV5WqtW29FJxBhsPWAnn7j1zb1tVhECkSjMIiedca9VDhrPdOm2N_BGVnheyskJ0V8mBF0NwdCisfNm2cqovSH4UYpoJRgQN303Ol1vr4TROBWUrJL2ZokBQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862167077</pqid></control><display><type>article</type><title>Numerical and Experimental Millimeter-Wave Dosimetry for In Vitro Experiments</title><source>IEEE Electronic Library (IEL)</source><creator>Zhadobov, M. ; Sauleau, R. ; Le Drean, Y. ; Alekseev, S.I. ; Ziskin, M.C.</creator><creatorcontrib>Zhadobov, M. ; Sauleau, R. ; Le Drean, Y. ; Alekseev, S.I. ; Ziskin, M.C.</creatorcontrib><description>This paper provides extensive dosimetry data for in vitro experiments regarding the biological effects of millimeter waves. Two particular frequency ranges have been considered, which are: (1) the 57-64-GHz frequency range dedicated to near-future applications in high-speed wireless communication systems and (2) the discrete frequencies used in millimeter-wave therapy, namely, 42.25, 53.57, and 61.22 GHz. The dielectric properties of keratinocyte cells and culture media were determined using permittivity data of free water and Maxwell's mixture equation. The local specific absorption rate (SAR) distribution within the cell monolayer located in a standard tissue culture plate was computed using the finite-element method and the finite-integration technique. The averaged near-surface SAR for the cell monolayer was determined using both numerical electric-field-based and experimental temperature-based approaches. The SAR was computed taking into account physiological variations of the water content in the keratinocyte cells, as well as variations in the cell monolayer thickness. Experimental and computational results are shown to be in very good agreement.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2008.2006797</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied classical electromagnetism ; Applied sciences ; Biochemistry, Molecular Biology ; Biological effects of electromagnetic (EM) radiation ; Biophysics ; Circuit properties ; Computation ; Computational Physics ; Culture ; Dielectric properties ; Dielectrics ; Dosimeters ; Dosimetry ; Electric, optical and optoelectronic circuits ; Electromagnetic wave propagation, radiowave propagation ; Electromagnetism ; Electromagnetism; electron and ion optics ; Electronics ; Engineering Sciences ; Exact sciences and technology ; finite-element method (FEM) ; Frequency ; Frequency ranges ; Fundamental areas of phenomenology (including applications) ; In vitro ; In vitro testing ; infrared radiometry ; Life Sciences ; Mathematical analysis ; Medical treatment ; Microwave circuits, microwave integrated circuits, microwave transmission lines, submillimeter wave circuits ; Millimeter wave communication ; Millimeter wave technology ; Monolayers ; Permittivity ; Physics ; specific absorption rate (SAR) ; Synthetic aperture radar ; Water ; Wireless communication ; Wireless communications</subject><ispartof>IEEE transactions on microwave theory and techniques, 2008-12, Vol.56 (12), p.2998-3007</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-69e31d7af57d743e6222eb328318fa2dc1071585f7eb4faf43b24743b6069ec73</citedby><cites>FETCH-LOGICAL-c388t-69e31d7af57d743e6222eb328318fa2dc1071585f7eb4faf43b24743b6069ec73</cites><orcidid>0000-0003-1756-4315 ; 0000-0001-7510-9762 ; 0000-0002-3809-110X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4682594$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,777,781,793,882,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4682594$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20985482$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00356153$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhadobov, M.</creatorcontrib><creatorcontrib>Sauleau, R.</creatorcontrib><creatorcontrib>Le Drean, Y.</creatorcontrib><creatorcontrib>Alekseev, S.I.</creatorcontrib><creatorcontrib>Ziskin, M.C.</creatorcontrib><title>Numerical and Experimental Millimeter-Wave Dosimetry for In Vitro Experiments</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>This paper provides extensive dosimetry data for in vitro experiments regarding the biological effects of millimeter waves. Two particular frequency ranges have been considered, which are: (1) the 57-64-GHz frequency range dedicated to near-future applications in high-speed wireless communication systems and (2) the discrete frequencies used in millimeter-wave therapy, namely, 42.25, 53.57, and 61.22 GHz. The dielectric properties of keratinocyte cells and culture media were determined using permittivity data of free water and Maxwell's mixture equation. The local specific absorption rate (SAR) distribution within the cell monolayer located in a standard tissue culture plate was computed using the finite-element method and the finite-integration technique. The averaged near-surface SAR for the cell monolayer was determined using both numerical electric-field-based and experimental temperature-based approaches. The SAR was computed taking into account physiological variations of the water content in the keratinocyte cells, as well as variations in the cell monolayer thickness. Experimental and computational results are shown to be in very good agreement.</description><subject>Applied classical electromagnetism</subject><subject>Applied sciences</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biological effects of electromagnetic (EM) radiation</subject><subject>Biophysics</subject><subject>Circuit properties</subject><subject>Computation</subject><subject>Computational Physics</subject><subject>Culture</subject><subject>Dielectric properties</subject><subject>Dielectrics</subject><subject>Dosimeters</subject><subject>Dosimetry</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electromagnetic wave propagation, radiowave propagation</subject><subject>Electromagnetism</subject><subject>Electromagnetism; electron and ion optics</subject><subject>Electronics</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>finite-element method (FEM)</subject><subject>Frequency</subject><subject>Frequency ranges</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>In vitro</subject><subject>In vitro testing</subject><subject>infrared radiometry</subject><subject>Life Sciences</subject><subject>Mathematical analysis</subject><subject>Medical treatment</subject><subject>Microwave circuits, microwave integrated circuits, microwave transmission lines, submillimeter wave circuits</subject><subject>Millimeter wave communication</subject><subject>Millimeter wave technology</subject><subject>Monolayers</subject><subject>Permittivity</subject><subject>Physics</subject><subject>specific absorption rate (SAR)</subject><subject>Synthetic aperture radar</subject><subject>Water</subject><subject>Wireless communication</subject><subject>Wireless communications</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkV1LwzAUhoMoOKc_QLwpgogXnfls0ssxpxtselP1MqRdgh1dM5N2uH9vSscQb5Kck-c9h3NeAK4RHCEE08dsmWUjDKHojoSn_AQMEGM8ThMOT8EAQiTilAp4Di68X4eQMigGYPnabrQrC1VFql5F059tiDa6bkJiWVZVeDfaxZ9qp6Mn67vQ7SNjXTSvo4-ycfaPxl-CM6Mqr68O9xC8P0-zySxevL3MJ-NFXBAhmjhJNUErrgzjK06JTjDGOidYECSMwqsCQY6YYIbrnBplKMkxDWCewCAtOBmCh77ul6rkNjRXbi-tKuVsvJBdDkLCEsTIDgX2vme3zn632jdyU_pCV5WqtW29FJxBhsPWAnn7j1zb1tVhECkSjMIiedca9VDhrPdOm2N_BGVnheyskJ0V8mBF0NwdCisfNm2cqovSH4UYpoJRgQN303Ol1vr4TROBWUrJL2ZokBQ</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Zhadobov, M.</creator><creator>Sauleau, R.</creator><creator>Le Drean, Y.</creator><creator>Alekseev, S.I.</creator><creator>Ziskin, M.C.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1756-4315</orcidid><orcidid>https://orcid.org/0000-0001-7510-9762</orcidid><orcidid>https://orcid.org/0000-0002-3809-110X</orcidid></search><sort><creationdate>20081201</creationdate><title>Numerical and Experimental Millimeter-Wave Dosimetry for In Vitro Experiments</title><author>Zhadobov, M. ; Sauleau, R. ; Le Drean, Y. ; Alekseev, S.I. ; Ziskin, M.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-69e31d7af57d743e6222eb328318fa2dc1071585f7eb4faf43b24743b6069ec73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied classical electromagnetism</topic><topic>Applied sciences</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biological effects of electromagnetic (EM) radiation</topic><topic>Biophysics</topic><topic>Circuit properties</topic><topic>Computation</topic><topic>Computational Physics</topic><topic>Culture</topic><topic>Dielectric properties</topic><topic>Dielectrics</topic><topic>Dosimeters</topic><topic>Dosimetry</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electromagnetic wave propagation, radiowave propagation</topic><topic>Electromagnetism</topic><topic>Electromagnetism; electron and ion optics</topic><topic>Electronics</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>finite-element method (FEM)</topic><topic>Frequency</topic><topic>Frequency ranges</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>In vitro</topic><topic>In vitro testing</topic><topic>infrared radiometry</topic><topic>Life Sciences</topic><topic>Mathematical analysis</topic><topic>Medical treatment</topic><topic>Microwave circuits, microwave integrated circuits, microwave transmission lines, submillimeter wave circuits</topic><topic>Millimeter wave communication</topic><topic>Millimeter wave technology</topic><topic>Monolayers</topic><topic>Permittivity</topic><topic>Physics</topic><topic>specific absorption rate (SAR)</topic><topic>Synthetic aperture radar</topic><topic>Water</topic><topic>Wireless communication</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhadobov, M.</creatorcontrib><creatorcontrib>Sauleau, R.</creatorcontrib><creatorcontrib>Le Drean, Y.</creatorcontrib><creatorcontrib>Alekseev, S.I.</creatorcontrib><creatorcontrib>Ziskin, M.C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhadobov, M.</au><au>Sauleau, R.</au><au>Le Drean, Y.</au><au>Alekseev, S.I.</au><au>Ziskin, M.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical and Experimental Millimeter-Wave Dosimetry for In Vitro Experiments</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2008-12-01</date><risdate>2008</risdate><volume>56</volume><issue>12</issue><spage>2998</spage><epage>3007</epage><pages>2998-3007</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>This paper provides extensive dosimetry data for in vitro experiments regarding the biological effects of millimeter waves. Two particular frequency ranges have been considered, which are: (1) the 57-64-GHz frequency range dedicated to near-future applications in high-speed wireless communication systems and (2) the discrete frequencies used in millimeter-wave therapy, namely, 42.25, 53.57, and 61.22 GHz. The dielectric properties of keratinocyte cells and culture media were determined using permittivity data of free water and Maxwell's mixture equation. The local specific absorption rate (SAR) distribution within the cell monolayer located in a standard tissue culture plate was computed using the finite-element method and the finite-integration technique. The averaged near-surface SAR for the cell monolayer was determined using both numerical electric-field-based and experimental temperature-based approaches. The SAR was computed taking into account physiological variations of the water content in the keratinocyte cells, as well as variations in the cell monolayer thickness. Experimental and computational results are shown to be in very good agreement.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMTT.2008.2006797</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1756-4315</orcidid><orcidid>https://orcid.org/0000-0001-7510-9762</orcidid><orcidid>https://orcid.org/0000-0002-3809-110X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9480 |
ispartof | IEEE transactions on microwave theory and techniques, 2008-12, Vol.56 (12), p.2998-3007 |
issn | 0018-9480 1557-9670 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMTT_2008_2006797 |
source | IEEE Electronic Library (IEL) |
subjects | Applied classical electromagnetism Applied sciences Biochemistry, Molecular Biology Biological effects of electromagnetic (EM) radiation Biophysics Circuit properties Computation Computational Physics Culture Dielectric properties Dielectrics Dosimeters Dosimetry Electric, optical and optoelectronic circuits Electromagnetic wave propagation, radiowave propagation Electromagnetism Electromagnetism electron and ion optics Electronics Engineering Sciences Exact sciences and technology finite-element method (FEM) Frequency Frequency ranges Fundamental areas of phenomenology (including applications) In vitro In vitro testing infrared radiometry Life Sciences Mathematical analysis Medical treatment Microwave circuits, microwave integrated circuits, microwave transmission lines, submillimeter wave circuits Millimeter wave communication Millimeter wave technology Monolayers Permittivity Physics specific absorption rate (SAR) Synthetic aperture radar Water Wireless communication Wireless communications |
title | Numerical and Experimental Millimeter-Wave Dosimetry for In Vitro Experiments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A13%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20and%20Experimental%20Millimeter-Wave%20Dosimetry%20for%20In%20Vitro%20Experiments&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Zhadobov,%20M.&rft.date=2008-12-01&rft.volume=56&rft.issue=12&rft.spage=2998&rft.epage=3007&rft.pages=2998-3007&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2008.2006797&rft_dat=%3Cproquest_RIE%3E2321717681%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862167077&rft_id=info:pmid/&rft_ieee_id=4682594&rfr_iscdi=true |