Numerical and Experimental Millimeter-Wave Dosimetry for In Vitro Experiments

This paper provides extensive dosimetry data for in vitro experiments regarding the biological effects of millimeter waves. Two particular frequency ranges have been considered, which are: (1) the 57-64-GHz frequency range dedicated to near-future applications in high-speed wireless communication sy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on microwave theory and techniques 2008-12, Vol.56 (12), p.2998-3007
Hauptverfasser: Zhadobov, M., Sauleau, R., Le Drean, Y., Alekseev, S.I., Ziskin, M.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3007
container_issue 12
container_start_page 2998
container_title IEEE transactions on microwave theory and techniques
container_volume 56
creator Zhadobov, M.
Sauleau, R.
Le Drean, Y.
Alekseev, S.I.
Ziskin, M.C.
description This paper provides extensive dosimetry data for in vitro experiments regarding the biological effects of millimeter waves. Two particular frequency ranges have been considered, which are: (1) the 57-64-GHz frequency range dedicated to near-future applications in high-speed wireless communication systems and (2) the discrete frequencies used in millimeter-wave therapy, namely, 42.25, 53.57, and 61.22 GHz. The dielectric properties of keratinocyte cells and culture media were determined using permittivity data of free water and Maxwell's mixture equation. The local specific absorption rate (SAR) distribution within the cell monolayer located in a standard tissue culture plate was computed using the finite-element method and the finite-integration technique. The averaged near-surface SAR for the cell monolayer was determined using both numerical electric-field-based and experimental temperature-based approaches. The SAR was computed taking into account physiological variations of the water content in the keratinocyte cells, as well as variations in the cell monolayer thickness. Experimental and computational results are shown to be in very good agreement.
doi_str_mv 10.1109/TMTT.2008.2006797
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMTT_2008_2006797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4682594</ieee_id><sourcerecordid>2321717681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-69e31d7af57d743e6222eb328318fa2dc1071585f7eb4faf43b24743b6069ec73</originalsourceid><addsrcrecordid>eNpdkV1LwzAUhoMoOKc_QLwpgogXnfls0ssxpxtselP1MqRdgh1dM5N2uH9vSscQb5Kck-c9h3NeAK4RHCEE08dsmWUjDKHojoSn_AQMEGM8ThMOT8EAQiTilAp4Di68X4eQMigGYPnabrQrC1VFql5F059tiDa6bkJiWVZVeDfaxZ9qp6Mn67vQ7SNjXTSvo4-ycfaPxl-CM6Mqr68O9xC8P0-zySxevL3MJ-NFXBAhmjhJNUErrgzjK06JTjDGOidYECSMwqsCQY6YYIbrnBplKMkxDWCewCAtOBmCh77ul6rkNjRXbi-tKuVsvJBdDkLCEsTIDgX2vme3zn632jdyU_pCV5WqtW29FJxBhsPWAnn7j1zb1tVhECkSjMIiedca9VDhrPdOm2N_BGVnheyskJ0V8mBF0NwdCisfNm2cqovSH4UYpoJRgQN303Ol1vr4TROBWUrJL2ZokBQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862167077</pqid></control><display><type>article</type><title>Numerical and Experimental Millimeter-Wave Dosimetry for In Vitro Experiments</title><source>IEEE Electronic Library (IEL)</source><creator>Zhadobov, M. ; Sauleau, R. ; Le Drean, Y. ; Alekseev, S.I. ; Ziskin, M.C.</creator><creatorcontrib>Zhadobov, M. ; Sauleau, R. ; Le Drean, Y. ; Alekseev, S.I. ; Ziskin, M.C.</creatorcontrib><description>This paper provides extensive dosimetry data for in vitro experiments regarding the biological effects of millimeter waves. Two particular frequency ranges have been considered, which are: (1) the 57-64-GHz frequency range dedicated to near-future applications in high-speed wireless communication systems and (2) the discrete frequencies used in millimeter-wave therapy, namely, 42.25, 53.57, and 61.22 GHz. The dielectric properties of keratinocyte cells and culture media were determined using permittivity data of free water and Maxwell's mixture equation. The local specific absorption rate (SAR) distribution within the cell monolayer located in a standard tissue culture plate was computed using the finite-element method and the finite-integration technique. The averaged near-surface SAR for the cell monolayer was determined using both numerical electric-field-based and experimental temperature-based approaches. The SAR was computed taking into account physiological variations of the water content in the keratinocyte cells, as well as variations in the cell monolayer thickness. Experimental and computational results are shown to be in very good agreement.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2008.2006797</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied classical electromagnetism ; Applied sciences ; Biochemistry, Molecular Biology ; Biological effects of electromagnetic (EM) radiation ; Biophysics ; Circuit properties ; Computation ; Computational Physics ; Culture ; Dielectric properties ; Dielectrics ; Dosimeters ; Dosimetry ; Electric, optical and optoelectronic circuits ; Electromagnetic wave propagation, radiowave propagation ; Electromagnetism ; Electromagnetism; electron and ion optics ; Electronics ; Engineering Sciences ; Exact sciences and technology ; finite-element method (FEM) ; Frequency ; Frequency ranges ; Fundamental areas of phenomenology (including applications) ; In vitro ; In vitro testing ; infrared radiometry ; Life Sciences ; Mathematical analysis ; Medical treatment ; Microwave circuits, microwave integrated circuits, microwave transmission lines, submillimeter wave circuits ; Millimeter wave communication ; Millimeter wave technology ; Monolayers ; Permittivity ; Physics ; specific absorption rate (SAR) ; Synthetic aperture radar ; Water ; Wireless communication ; Wireless communications</subject><ispartof>IEEE transactions on microwave theory and techniques, 2008-12, Vol.56 (12), p.2998-3007</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-69e31d7af57d743e6222eb328318fa2dc1071585f7eb4faf43b24743b6069ec73</citedby><cites>FETCH-LOGICAL-c388t-69e31d7af57d743e6222eb328318fa2dc1071585f7eb4faf43b24743b6069ec73</cites><orcidid>0000-0003-1756-4315 ; 0000-0001-7510-9762 ; 0000-0002-3809-110X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4682594$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,777,781,793,882,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4682594$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20985482$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00356153$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhadobov, M.</creatorcontrib><creatorcontrib>Sauleau, R.</creatorcontrib><creatorcontrib>Le Drean, Y.</creatorcontrib><creatorcontrib>Alekseev, S.I.</creatorcontrib><creatorcontrib>Ziskin, M.C.</creatorcontrib><title>Numerical and Experimental Millimeter-Wave Dosimetry for In Vitro Experiments</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>This paper provides extensive dosimetry data for in vitro experiments regarding the biological effects of millimeter waves. Two particular frequency ranges have been considered, which are: (1) the 57-64-GHz frequency range dedicated to near-future applications in high-speed wireless communication systems and (2) the discrete frequencies used in millimeter-wave therapy, namely, 42.25, 53.57, and 61.22 GHz. The dielectric properties of keratinocyte cells and culture media were determined using permittivity data of free water and Maxwell's mixture equation. The local specific absorption rate (SAR) distribution within the cell monolayer located in a standard tissue culture plate was computed using the finite-element method and the finite-integration technique. The averaged near-surface SAR for the cell monolayer was determined using both numerical electric-field-based and experimental temperature-based approaches. The SAR was computed taking into account physiological variations of the water content in the keratinocyte cells, as well as variations in the cell monolayer thickness. Experimental and computational results are shown to be in very good agreement.</description><subject>Applied classical electromagnetism</subject><subject>Applied sciences</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biological effects of electromagnetic (EM) radiation</subject><subject>Biophysics</subject><subject>Circuit properties</subject><subject>Computation</subject><subject>Computational Physics</subject><subject>Culture</subject><subject>Dielectric properties</subject><subject>Dielectrics</subject><subject>Dosimeters</subject><subject>Dosimetry</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electromagnetic wave propagation, radiowave propagation</subject><subject>Electromagnetism</subject><subject>Electromagnetism; electron and ion optics</subject><subject>Electronics</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>finite-element method (FEM)</subject><subject>Frequency</subject><subject>Frequency ranges</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>In vitro</subject><subject>In vitro testing</subject><subject>infrared radiometry</subject><subject>Life Sciences</subject><subject>Mathematical analysis</subject><subject>Medical treatment</subject><subject>Microwave circuits, microwave integrated circuits, microwave transmission lines, submillimeter wave circuits</subject><subject>Millimeter wave communication</subject><subject>Millimeter wave technology</subject><subject>Monolayers</subject><subject>Permittivity</subject><subject>Physics</subject><subject>specific absorption rate (SAR)</subject><subject>Synthetic aperture radar</subject><subject>Water</subject><subject>Wireless communication</subject><subject>Wireless communications</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkV1LwzAUhoMoOKc_QLwpgogXnfls0ssxpxtselP1MqRdgh1dM5N2uH9vSscQb5Kck-c9h3NeAK4RHCEE08dsmWUjDKHojoSn_AQMEGM8ThMOT8EAQiTilAp4Di68X4eQMigGYPnabrQrC1VFql5F059tiDa6bkJiWVZVeDfaxZ9qp6Mn67vQ7SNjXTSvo4-ycfaPxl-CM6Mqr68O9xC8P0-zySxevL3MJ-NFXBAhmjhJNUErrgzjK06JTjDGOidYECSMwqsCQY6YYIbrnBplKMkxDWCewCAtOBmCh77ul6rkNjRXbi-tKuVsvJBdDkLCEsTIDgX2vme3zn632jdyU_pCV5WqtW29FJxBhsPWAnn7j1zb1tVhECkSjMIiedca9VDhrPdOm2N_BGVnheyskJ0V8mBF0NwdCisfNm2cqovSH4UYpoJRgQN303Ol1vr4TROBWUrJL2ZokBQ</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Zhadobov, M.</creator><creator>Sauleau, R.</creator><creator>Le Drean, Y.</creator><creator>Alekseev, S.I.</creator><creator>Ziskin, M.C.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1756-4315</orcidid><orcidid>https://orcid.org/0000-0001-7510-9762</orcidid><orcidid>https://orcid.org/0000-0002-3809-110X</orcidid></search><sort><creationdate>20081201</creationdate><title>Numerical and Experimental Millimeter-Wave Dosimetry for In Vitro Experiments</title><author>Zhadobov, M. ; Sauleau, R. ; Le Drean, Y. ; Alekseev, S.I. ; Ziskin, M.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-69e31d7af57d743e6222eb328318fa2dc1071585f7eb4faf43b24743b6069ec73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied classical electromagnetism</topic><topic>Applied sciences</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biological effects of electromagnetic (EM) radiation</topic><topic>Biophysics</topic><topic>Circuit properties</topic><topic>Computation</topic><topic>Computational Physics</topic><topic>Culture</topic><topic>Dielectric properties</topic><topic>Dielectrics</topic><topic>Dosimeters</topic><topic>Dosimetry</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electromagnetic wave propagation, radiowave propagation</topic><topic>Electromagnetism</topic><topic>Electromagnetism; electron and ion optics</topic><topic>Electronics</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>finite-element method (FEM)</topic><topic>Frequency</topic><topic>Frequency ranges</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>In vitro</topic><topic>In vitro testing</topic><topic>infrared radiometry</topic><topic>Life Sciences</topic><topic>Mathematical analysis</topic><topic>Medical treatment</topic><topic>Microwave circuits, microwave integrated circuits, microwave transmission lines, submillimeter wave circuits</topic><topic>Millimeter wave communication</topic><topic>Millimeter wave technology</topic><topic>Monolayers</topic><topic>Permittivity</topic><topic>Physics</topic><topic>specific absorption rate (SAR)</topic><topic>Synthetic aperture radar</topic><topic>Water</topic><topic>Wireless communication</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhadobov, M.</creatorcontrib><creatorcontrib>Sauleau, R.</creatorcontrib><creatorcontrib>Le Drean, Y.</creatorcontrib><creatorcontrib>Alekseev, S.I.</creatorcontrib><creatorcontrib>Ziskin, M.C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhadobov, M.</au><au>Sauleau, R.</au><au>Le Drean, Y.</au><au>Alekseev, S.I.</au><au>Ziskin, M.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical and Experimental Millimeter-Wave Dosimetry for In Vitro Experiments</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2008-12-01</date><risdate>2008</risdate><volume>56</volume><issue>12</issue><spage>2998</spage><epage>3007</epage><pages>2998-3007</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>This paper provides extensive dosimetry data for in vitro experiments regarding the biological effects of millimeter waves. Two particular frequency ranges have been considered, which are: (1) the 57-64-GHz frequency range dedicated to near-future applications in high-speed wireless communication systems and (2) the discrete frequencies used in millimeter-wave therapy, namely, 42.25, 53.57, and 61.22 GHz. The dielectric properties of keratinocyte cells and culture media were determined using permittivity data of free water and Maxwell's mixture equation. The local specific absorption rate (SAR) distribution within the cell monolayer located in a standard tissue culture plate was computed using the finite-element method and the finite-integration technique. The averaged near-surface SAR for the cell monolayer was determined using both numerical electric-field-based and experimental temperature-based approaches. The SAR was computed taking into account physiological variations of the water content in the keratinocyte cells, as well as variations in the cell monolayer thickness. Experimental and computational results are shown to be in very good agreement.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMTT.2008.2006797</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1756-4315</orcidid><orcidid>https://orcid.org/0000-0001-7510-9762</orcidid><orcidid>https://orcid.org/0000-0002-3809-110X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9480
ispartof IEEE transactions on microwave theory and techniques, 2008-12, Vol.56 (12), p.2998-3007
issn 0018-9480
1557-9670
language eng
recordid cdi_crossref_primary_10_1109_TMTT_2008_2006797
source IEEE Electronic Library (IEL)
subjects Applied classical electromagnetism
Applied sciences
Biochemistry, Molecular Biology
Biological effects of electromagnetic (EM) radiation
Biophysics
Circuit properties
Computation
Computational Physics
Culture
Dielectric properties
Dielectrics
Dosimeters
Dosimetry
Electric, optical and optoelectronic circuits
Electromagnetic wave propagation, radiowave propagation
Electromagnetism
Electromagnetism
electron and ion optics
Electronics
Engineering Sciences
Exact sciences and technology
finite-element method (FEM)
Frequency
Frequency ranges
Fundamental areas of phenomenology (including applications)
In vitro
In vitro testing
infrared radiometry
Life Sciences
Mathematical analysis
Medical treatment
Microwave circuits, microwave integrated circuits, microwave transmission lines, submillimeter wave circuits
Millimeter wave communication
Millimeter wave technology
Monolayers
Permittivity
Physics
specific absorption rate (SAR)
Synthetic aperture radar
Water
Wireless communication
Wireless communications
title Numerical and Experimental Millimeter-Wave Dosimetry for In Vitro Experiments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A13%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20and%20Experimental%20Millimeter-Wave%20Dosimetry%20for%20In%20Vitro%20Experiments&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Zhadobov,%20M.&rft.date=2008-12-01&rft.volume=56&rft.issue=12&rft.spage=2998&rft.epage=3007&rft.pages=2998-3007&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2008.2006797&rft_dat=%3Cproquest_RIE%3E2321717681%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862167077&rft_id=info:pmid/&rft_ieee_id=4682594&rfr_iscdi=true