Alternating-Direction Implicit Formulation of the Finite-Element Time-Domain Method

In this paper, two implicit finite-element time-domain (FETD) solutions of the Maxwell equations are presented. The first time-dependent formulation employs a time-integration method based on the alternating-direction implicit (ADI) method. The ADI method is directly applied to the time-dependent Ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on microwave theory and techniques 2007-06, Vol.55 (6), p.1322-1331
Hauptverfasser: Movahhedi, M., Abdipour, A., Nentchev, A., Dehghan, M., Selberherr, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1331
container_issue 6
container_start_page 1322
container_title IEEE transactions on microwave theory and techniques
container_volume 55
creator Movahhedi, M.
Abdipour, A.
Nentchev, A.
Dehghan, M.
Selberherr, S.
description In this paper, two implicit finite-element time-domain (FETD) solutions of the Maxwell equations are presented. The first time-dependent formulation employs a time-integration method based on the alternating-direction implicit (ADI) method. The ADI method is directly applied to the time-dependent Maxwell curl equations in order to obtain an unconditionally stable FETD approach, unlike the conventional FETD method, which is conditionally stable. A numerical formulation for the 3-D ADI-FETD method is presented. For stability analysis of the proposed method, the amplification matrix is derived. Investigation of the proposed method formulation shows that it does not generally lead to a tri-diagonal system of equations. Therefore, the Crank-Nicolson FETD method is introduced as another alternative in order to obtain an unconditionally stable method. Numerical results are presented to demonstrate the effectiveness of the proposed methods and are compared to those obtained using the conventional FETD method.
doi_str_mv 10.1109/TMTT.2007.897777
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMTT_2007_897777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4230880</ieee_id><sourcerecordid>880665863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-ac266991262e8f0b8b02773f2d3a85029d8b0bc8e03c003f15739f49a15772e33</originalsourceid><addsrcrecordid>eNp9kUFP3DAQha2KSiy0d6ReIqS2pyxjO3HsIwIWkEA9kJ4jr3fS9cqJt7Zz4N_jsKhIHDoXj8ffe5LnEXJGYUkpqIv2sW2XDKBZStXk-kQWtK6bUokGjsgCgMpSVRKOyUmMu3ytapAL8nTpEoZRJzv-Ka9tQJOsH4v7Ye-ssalY-TBMTr8OfV-kLRYrO9qE5Y3DAcdUtHbA8toP2o7FI6at33whn3vtIn59O0_J79VNe3VXPvy6vb-6fCgNlzyV2jAhlKJMMJQ9rOUaWNPwnm24ljUwtcmTtZEI3ADwntYNV32ldG4ahpyfkp8H333wfyeMqRtsNOicHtFPsZMShKilmMkf_yV5JYDm7WTw_AO481Nej8tuoqIVQD1DcIBM8DEG7Lt9sIMOzx2Fbg6jm8Po5jC6QxhZ8v3NV0ejXR_0aGx810lFoXrlvh04i4j_nivGIX-GvwBqlZDL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864140058</pqid></control><display><type>article</type><title>Alternating-Direction Implicit Formulation of the Finite-Element Time-Domain Method</title><source>IEEE Electronic Library (IEL)</source><creator>Movahhedi, M. ; Abdipour, A. ; Nentchev, A. ; Dehghan, M. ; Selberherr, S.</creator><creatorcontrib>Movahhedi, M. ; Abdipour, A. ; Nentchev, A. ; Dehghan, M. ; Selberherr, S.</creatorcontrib><description>In this paper, two implicit finite-element time-domain (FETD) solutions of the Maxwell equations are presented. The first time-dependent formulation employs a time-integration method based on the alternating-direction implicit (ADI) method. The ADI method is directly applied to the time-dependent Maxwell curl equations in order to obtain an unconditionally stable FETD approach, unlike the conventional FETD method, which is conditionally stable. A numerical formulation for the 3-D ADI-FETD method is presented. For stability analysis of the proposed method, the amplification matrix is derived. Investigation of the proposed method formulation shows that it does not generally lead to a tri-diagonal system of equations. Therefore, the Crank-Nicolson FETD method is introduced as another alternative in order to obtain an unconditionally stable method. Numerical results are presented to demonstrate the effectiveness of the proposed methods and are compared to those obtained using the conventional FETD method.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2007.897777</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Alternating-direction implicit (ADI) technique ; Amplification ; Applied classical electromagnetism ; Crank-Nicolson (CN) method ; Electromagnetic transients ; Electromagnetic wave propagation, radiowave propagation ; Electromagnetism; electron and ion optics ; Exact sciences and technology ; Finite difference methods ; Finite element method ; Finite element methods ; finite-element time-domain (FETD) method ; Fundamental areas of phenomenology (including applications) ; instability ; Mathematical analysis ; Mathematical models ; Maxwell equation ; Maxwell equations ; Maxwell's equations ; Microwaves ; Nodular iron ; Nonlinear equations ; Partial differential equations ; Perfectly matched layers ; Physics ; Stability analysis ; Time domain analysis ; Transient analysis ; unconditional stability</subject><ispartof>IEEE transactions on microwave theory and techniques, 2007-06, Vol.55 (6), p.1322-1331</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-ac266991262e8f0b8b02773f2d3a85029d8b0bc8e03c003f15739f49a15772e33</citedby><cites>FETCH-LOGICAL-c383t-ac266991262e8f0b8b02773f2d3a85029d8b0bc8e03c003f15739f49a15772e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4230880$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,796,23930,23931,25140,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4230880$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18910477$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Movahhedi, M.</creatorcontrib><creatorcontrib>Abdipour, A.</creatorcontrib><creatorcontrib>Nentchev, A.</creatorcontrib><creatorcontrib>Dehghan, M.</creatorcontrib><creatorcontrib>Selberherr, S.</creatorcontrib><title>Alternating-Direction Implicit Formulation of the Finite-Element Time-Domain Method</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>In this paper, two implicit finite-element time-domain (FETD) solutions of the Maxwell equations are presented. The first time-dependent formulation employs a time-integration method based on the alternating-direction implicit (ADI) method. The ADI method is directly applied to the time-dependent Maxwell curl equations in order to obtain an unconditionally stable FETD approach, unlike the conventional FETD method, which is conditionally stable. A numerical formulation for the 3-D ADI-FETD method is presented. For stability analysis of the proposed method, the amplification matrix is derived. Investigation of the proposed method formulation shows that it does not generally lead to a tri-diagonal system of equations. Therefore, the Crank-Nicolson FETD method is introduced as another alternative in order to obtain an unconditionally stable method. Numerical results are presented to demonstrate the effectiveness of the proposed methods and are compared to those obtained using the conventional FETD method.</description><subject>Alternating-direction implicit (ADI) technique</subject><subject>Amplification</subject><subject>Applied classical electromagnetism</subject><subject>Crank-Nicolson (CN) method</subject><subject>Electromagnetic transients</subject><subject>Electromagnetic wave propagation, radiowave propagation</subject><subject>Electromagnetism; electron and ion optics</subject><subject>Exact sciences and technology</subject><subject>Finite difference methods</subject><subject>Finite element method</subject><subject>Finite element methods</subject><subject>finite-element time-domain (FETD) method</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>instability</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Maxwell equation</subject><subject>Maxwell equations</subject><subject>Maxwell's equations</subject><subject>Microwaves</subject><subject>Nodular iron</subject><subject>Nonlinear equations</subject><subject>Partial differential equations</subject><subject>Perfectly matched layers</subject><subject>Physics</subject><subject>Stability analysis</subject><subject>Time domain analysis</subject><subject>Transient analysis</subject><subject>unconditional stability</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kUFP3DAQha2KSiy0d6ReIqS2pyxjO3HsIwIWkEA9kJ4jr3fS9cqJt7Zz4N_jsKhIHDoXj8ffe5LnEXJGYUkpqIv2sW2XDKBZStXk-kQWtK6bUokGjsgCgMpSVRKOyUmMu3ytapAL8nTpEoZRJzv-Ka9tQJOsH4v7Ye-ssalY-TBMTr8OfV-kLRYrO9qE5Y3DAcdUtHbA8toP2o7FI6at33whn3vtIn59O0_J79VNe3VXPvy6vb-6fCgNlzyV2jAhlKJMMJQ9rOUaWNPwnm24ljUwtcmTtZEI3ADwntYNV32ldG4ahpyfkp8H333wfyeMqRtsNOicHtFPsZMShKilmMkf_yV5JYDm7WTw_AO481Nej8tuoqIVQD1DcIBM8DEG7Lt9sIMOzx2Fbg6jm8Po5jC6QxhZ8v3NV0ejXR_0aGx810lFoXrlvh04i4j_nivGIX-GvwBqlZDL</recordid><startdate>20070601</startdate><enddate>20070601</enddate><creator>Movahhedi, M.</creator><creator>Abdipour, A.</creator><creator>Nentchev, A.</creator><creator>Dehghan, M.</creator><creator>Selberherr, S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20070601</creationdate><title>Alternating-Direction Implicit Formulation of the Finite-Element Time-Domain Method</title><author>Movahhedi, M. ; Abdipour, A. ; Nentchev, A. ; Dehghan, M. ; Selberherr, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-ac266991262e8f0b8b02773f2d3a85029d8b0bc8e03c003f15739f49a15772e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Alternating-direction implicit (ADI) technique</topic><topic>Amplification</topic><topic>Applied classical electromagnetism</topic><topic>Crank-Nicolson (CN) method</topic><topic>Electromagnetic transients</topic><topic>Electromagnetic wave propagation, radiowave propagation</topic><topic>Electromagnetism; electron and ion optics</topic><topic>Exact sciences and technology</topic><topic>Finite difference methods</topic><topic>Finite element method</topic><topic>Finite element methods</topic><topic>finite-element time-domain (FETD) method</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>instability</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Maxwell equation</topic><topic>Maxwell equations</topic><topic>Maxwell's equations</topic><topic>Microwaves</topic><topic>Nodular iron</topic><topic>Nonlinear equations</topic><topic>Partial differential equations</topic><topic>Perfectly matched layers</topic><topic>Physics</topic><topic>Stability analysis</topic><topic>Time domain analysis</topic><topic>Transient analysis</topic><topic>unconditional stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Movahhedi, M.</creatorcontrib><creatorcontrib>Abdipour, A.</creatorcontrib><creatorcontrib>Nentchev, A.</creatorcontrib><creatorcontrib>Dehghan, M.</creatorcontrib><creatorcontrib>Selberherr, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Movahhedi, M.</au><au>Abdipour, A.</au><au>Nentchev, A.</au><au>Dehghan, M.</au><au>Selberherr, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alternating-Direction Implicit Formulation of the Finite-Element Time-Domain Method</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2007-06-01</date><risdate>2007</risdate><volume>55</volume><issue>6</issue><spage>1322</spage><epage>1331</epage><pages>1322-1331</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>In this paper, two implicit finite-element time-domain (FETD) solutions of the Maxwell equations are presented. The first time-dependent formulation employs a time-integration method based on the alternating-direction implicit (ADI) method. The ADI method is directly applied to the time-dependent Maxwell curl equations in order to obtain an unconditionally stable FETD approach, unlike the conventional FETD method, which is conditionally stable. A numerical formulation for the 3-D ADI-FETD method is presented. For stability analysis of the proposed method, the amplification matrix is derived. Investigation of the proposed method formulation shows that it does not generally lead to a tri-diagonal system of equations. Therefore, the Crank-Nicolson FETD method is introduced as another alternative in order to obtain an unconditionally stable method. Numerical results are presented to demonstrate the effectiveness of the proposed methods and are compared to those obtained using the conventional FETD method.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMTT.2007.897777</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9480
ispartof IEEE transactions on microwave theory and techniques, 2007-06, Vol.55 (6), p.1322-1331
issn 0018-9480
1557-9670
language eng
recordid cdi_crossref_primary_10_1109_TMTT_2007_897777
source IEEE Electronic Library (IEL)
subjects Alternating-direction implicit (ADI) technique
Amplification
Applied classical electromagnetism
Crank-Nicolson (CN) method
Electromagnetic transients
Electromagnetic wave propagation, radiowave propagation
Electromagnetism
electron and ion optics
Exact sciences and technology
Finite difference methods
Finite element method
Finite element methods
finite-element time-domain (FETD) method
Fundamental areas of phenomenology (including applications)
instability
Mathematical analysis
Mathematical models
Maxwell equation
Maxwell equations
Maxwell's equations
Microwaves
Nodular iron
Nonlinear equations
Partial differential equations
Perfectly matched layers
Physics
Stability analysis
Time domain analysis
Transient analysis
unconditional stability
title Alternating-Direction Implicit Formulation of the Finite-Element Time-Domain Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A36%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alternating-Direction%20Implicit%20Formulation%20of%20the%20Finite-Element%20Time-Domain%20Method&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Movahhedi,%20M.&rft.date=2007-06-01&rft.volume=55&rft.issue=6&rft.spage=1322&rft.epage=1331&rft.pages=1322-1331&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2007.897777&rft_dat=%3Cproquest_RIE%3E880665863%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864140058&rft_id=info:pmid/&rft_ieee_id=4230880&rfr_iscdi=true