Robot-Assisted Optical Ultrasound Scanning
Optical ultrasound, where ultrasound is both generated and received using light, can be integrated in very small diameter instruments making it ideally suited to minimally invasive interventions. One-dimensional information can be obtained using a single pair of optical fibres comprising of a source...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical robotics and bionics 2021-11, Vol.3 (4), p.948-958 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 958 |
---|---|
container_issue | 4 |
container_start_page | 948 |
container_title | IEEE transactions on medical robotics and bionics |
container_volume | 3 |
creator | Dwyer, George Alles, Erwin J. Colchester, Richard J. Iyengar, Keshav Desjardins, Adrien E. Stoyanov, Danail |
description | Optical ultrasound, where ultrasound is both generated and received using light, can be integrated in very small diameter instruments making it ideally suited to minimally invasive interventions. One-dimensional information can be obtained using a single pair of optical fibres comprising of a source and detector but this can be difficult to interpret clinically. In this paper, we present a robotic-assisted scanning solution where a concentric tube robot manipulates an optical ultrasound probe along a consistent trajectory. A torque coil is utilized as a buffer between the curved nitinol tube and the probe to prevent torsion on the probe and maintain the axial orientation of the probe while the tube is rotating. The design and control of the scanning mechanism are presented along with the integration of the mechanism with a fibre-based imaging probe. Trajectory repeatability is assessed using electromagnetic tracking and a technique to calibrate the transformation between imaging and robot coordinates using a known model is presented. Finally, we show example images of 3D printed phantoms generated by collecting multiple OpUS A-scans within the same 3D scene to illustrate how robot-assisted scanning can expand the field of view. |
doi_str_mv | 10.1109/TMRB.2021.3118293 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMRB_2021_3118293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9560160</ieee_id><sourcerecordid>2599205723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-2caad0c6c6e361e92c0f4915d6150866654b517008746e6d5fc39cb925a375243</originalsourceid><addsrcrecordid>eNpNkNFKwzAUhoMoOOYeQLwpeCe0niTNaXM5h1NhMpjbdUjTVDpqW5Pswre3pUO8OofD958fPkJuKSSUgnzcv--eEgaMJpzSnEl-QWZMZBjz4Xj5b78mC--PAAMqIOM4Iw-7ruhCvPS-9sGW0bYPtdFNdGiC0747tWX0YXTb1u3nDbmqdOPt4jzn5LB-3q9e48325W213MSGcwwxM1qXYNCg5UitZAaqVFJR4tCZI6JIC0EzgDxL0WIpKsOlKSQTmmeCpXxO7qe_veu-T9YHdexOrh0qFRNSMhAZ4wNFJ8q4zntnK9W7-ku7H0VBjVbUaEWNVtTZypC5mzK1tfaPlwKBIvBf4MJbAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599205723</pqid></control><display><type>article</type><title>Robot-Assisted Optical Ultrasound Scanning</title><source>IEEE Electronic Library (IEL)</source><creator>Dwyer, George ; Alles, Erwin J. ; Colchester, Richard J. ; Iyengar, Keshav ; Desjardins, Adrien E. ; Stoyanov, Danail</creator><creatorcontrib>Dwyer, George ; Alles, Erwin J. ; Colchester, Richard J. ; Iyengar, Keshav ; Desjardins, Adrien E. ; Stoyanov, Danail</creatorcontrib><description>Optical ultrasound, where ultrasound is both generated and received using light, can be integrated in very small diameter instruments making it ideally suited to minimally invasive interventions. One-dimensional information can be obtained using a single pair of optical fibres comprising of a source and detector but this can be difficult to interpret clinically. In this paper, we present a robotic-assisted scanning solution where a concentric tube robot manipulates an optical ultrasound probe along a consistent trajectory. A torque coil is utilized as a buffer between the curved nitinol tube and the probe to prevent torsion on the probe and maintain the axial orientation of the probe while the tube is rotating. The design and control of the scanning mechanism are presented along with the integration of the mechanism with a fibre-based imaging probe. Trajectory repeatability is assessed using electromagnetic tracking and a technique to calibrate the transformation between imaging and robot coordinates using a known model is presented. Finally, we show example images of 3D printed phantoms generated by collecting multiple OpUS A-scans within the same 3D scene to illustrate how robot-assisted scanning can expand the field of view.</description><identifier>ISSN: 2576-3202</identifier><identifier>EISSN: 2576-3202</identifier><identifier>DOI: 10.1109/TMRB.2021.3118293</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Biomedical imaging ; Coils ; Diameters ; Field of view ; Medical robotics ; Nickel titanides ; Optical fibers ; Optical Ultrasound ; Probes ; Robot-assisted Imaging ; Robots ; Scanning ; Three dimensional printing ; Trajectory analysis ; Ultrasonic imaging</subject><ispartof>IEEE transactions on medical robotics and bionics, 2021-11, Vol.3 (4), p.948-958</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-2caad0c6c6e361e92c0f4915d6150866654b517008746e6d5fc39cb925a375243</citedby><cites>FETCH-LOGICAL-c336t-2caad0c6c6e361e92c0f4915d6150866654b517008746e6d5fc39cb925a375243</cites><orcidid>0000-0002-1658-4421 ; 0000-0001-8657-0546 ; 0000-0002-0980-3227 ; 0000-0001-7020-9537 ; 0000-0001-8019-7680 ; 0000-0002-1932-1811</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9560160$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9560160$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dwyer, George</creatorcontrib><creatorcontrib>Alles, Erwin J.</creatorcontrib><creatorcontrib>Colchester, Richard J.</creatorcontrib><creatorcontrib>Iyengar, Keshav</creatorcontrib><creatorcontrib>Desjardins, Adrien E.</creatorcontrib><creatorcontrib>Stoyanov, Danail</creatorcontrib><title>Robot-Assisted Optical Ultrasound Scanning</title><title>IEEE transactions on medical robotics and bionics</title><addtitle>TMRB</addtitle><description>Optical ultrasound, where ultrasound is both generated and received using light, can be integrated in very small diameter instruments making it ideally suited to minimally invasive interventions. One-dimensional information can be obtained using a single pair of optical fibres comprising of a source and detector but this can be difficult to interpret clinically. In this paper, we present a robotic-assisted scanning solution where a concentric tube robot manipulates an optical ultrasound probe along a consistent trajectory. A torque coil is utilized as a buffer between the curved nitinol tube and the probe to prevent torsion on the probe and maintain the axial orientation of the probe while the tube is rotating. The design and control of the scanning mechanism are presented along with the integration of the mechanism with a fibre-based imaging probe. Trajectory repeatability is assessed using electromagnetic tracking and a technique to calibrate the transformation between imaging and robot coordinates using a known model is presented. Finally, we show example images of 3D printed phantoms generated by collecting multiple OpUS A-scans within the same 3D scene to illustrate how robot-assisted scanning can expand the field of view.</description><subject>Biomedical imaging</subject><subject>Coils</subject><subject>Diameters</subject><subject>Field of view</subject><subject>Medical robotics</subject><subject>Nickel titanides</subject><subject>Optical fibers</subject><subject>Optical Ultrasound</subject><subject>Probes</subject><subject>Robot-assisted Imaging</subject><subject>Robots</subject><subject>Scanning</subject><subject>Three dimensional printing</subject><subject>Trajectory analysis</subject><subject>Ultrasonic imaging</subject><issn>2576-3202</issn><issn>2576-3202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkNFKwzAUhoMoOOYeQLwpeCe0niTNaXM5h1NhMpjbdUjTVDpqW5Pswre3pUO8OofD958fPkJuKSSUgnzcv--eEgaMJpzSnEl-QWZMZBjz4Xj5b78mC--PAAMqIOM4Iw-7ruhCvPS-9sGW0bYPtdFNdGiC0747tWX0YXTb1u3nDbmqdOPt4jzn5LB-3q9e48325W213MSGcwwxM1qXYNCg5UitZAaqVFJR4tCZI6JIC0EzgDxL0WIpKsOlKSQTmmeCpXxO7qe_veu-T9YHdexOrh0qFRNSMhAZ4wNFJ8q4zntnK9W7-ku7H0VBjVbUaEWNVtTZypC5mzK1tfaPlwKBIvBf4MJbAw</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Dwyer, George</creator><creator>Alles, Erwin J.</creator><creator>Colchester, Richard J.</creator><creator>Iyengar, Keshav</creator><creator>Desjardins, Adrien E.</creator><creator>Stoyanov, Danail</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>K9.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1658-4421</orcidid><orcidid>https://orcid.org/0000-0001-8657-0546</orcidid><orcidid>https://orcid.org/0000-0002-0980-3227</orcidid><orcidid>https://orcid.org/0000-0001-7020-9537</orcidid><orcidid>https://orcid.org/0000-0001-8019-7680</orcidid><orcidid>https://orcid.org/0000-0002-1932-1811</orcidid></search><sort><creationdate>20211101</creationdate><title>Robot-Assisted Optical Ultrasound Scanning</title><author>Dwyer, George ; Alles, Erwin J. ; Colchester, Richard J. ; Iyengar, Keshav ; Desjardins, Adrien E. ; Stoyanov, Danail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-2caad0c6c6e361e92c0f4915d6150866654b517008746e6d5fc39cb925a375243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomedical imaging</topic><topic>Coils</topic><topic>Diameters</topic><topic>Field of view</topic><topic>Medical robotics</topic><topic>Nickel titanides</topic><topic>Optical fibers</topic><topic>Optical Ultrasound</topic><topic>Probes</topic><topic>Robot-assisted Imaging</topic><topic>Robots</topic><topic>Scanning</topic><topic>Three dimensional printing</topic><topic>Trajectory analysis</topic><topic>Ultrasonic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dwyer, George</creatorcontrib><creatorcontrib>Alles, Erwin J.</creatorcontrib><creatorcontrib>Colchester, Richard J.</creatorcontrib><creatorcontrib>Iyengar, Keshav</creatorcontrib><creatorcontrib>Desjardins, Adrien E.</creatorcontrib><creatorcontrib>Stoyanov, Danail</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on medical robotics and bionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dwyer, George</au><au>Alles, Erwin J.</au><au>Colchester, Richard J.</au><au>Iyengar, Keshav</au><au>Desjardins, Adrien E.</au><au>Stoyanov, Danail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robot-Assisted Optical Ultrasound Scanning</atitle><jtitle>IEEE transactions on medical robotics and bionics</jtitle><stitle>TMRB</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>3</volume><issue>4</issue><spage>948</spage><epage>958</epage><pages>948-958</pages><issn>2576-3202</issn><eissn>2576-3202</eissn><abstract>Optical ultrasound, where ultrasound is both generated and received using light, can be integrated in very small diameter instruments making it ideally suited to minimally invasive interventions. One-dimensional information can be obtained using a single pair of optical fibres comprising of a source and detector but this can be difficult to interpret clinically. In this paper, we present a robotic-assisted scanning solution where a concentric tube robot manipulates an optical ultrasound probe along a consistent trajectory. A torque coil is utilized as a buffer between the curved nitinol tube and the probe to prevent torsion on the probe and maintain the axial orientation of the probe while the tube is rotating. The design and control of the scanning mechanism are presented along with the integration of the mechanism with a fibre-based imaging probe. Trajectory repeatability is assessed using electromagnetic tracking and a technique to calibrate the transformation between imaging and robot coordinates using a known model is presented. Finally, we show example images of 3D printed phantoms generated by collecting multiple OpUS A-scans within the same 3D scene to illustrate how robot-assisted scanning can expand the field of view.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMRB.2021.3118293</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1658-4421</orcidid><orcidid>https://orcid.org/0000-0001-8657-0546</orcidid><orcidid>https://orcid.org/0000-0002-0980-3227</orcidid><orcidid>https://orcid.org/0000-0001-7020-9537</orcidid><orcidid>https://orcid.org/0000-0001-8019-7680</orcidid><orcidid>https://orcid.org/0000-0002-1932-1811</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2576-3202 |
ispartof | IEEE transactions on medical robotics and bionics, 2021-11, Vol.3 (4), p.948-958 |
issn | 2576-3202 2576-3202 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMRB_2021_3118293 |
source | IEEE Electronic Library (IEL) |
subjects | Biomedical imaging Coils Diameters Field of view Medical robotics Nickel titanides Optical fibers Optical Ultrasound Probes Robot-assisted Imaging Robots Scanning Three dimensional printing Trajectory analysis Ultrasonic imaging |
title | Robot-Assisted Optical Ultrasound Scanning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A45%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robot-Assisted%20Optical%20Ultrasound%20Scanning&rft.jtitle=IEEE%20transactions%20on%20medical%20robotics%20and%20bionics&rft.au=Dwyer,%20George&rft.date=2021-11-01&rft.volume=3&rft.issue=4&rft.spage=948&rft.epage=958&rft.pages=948-958&rft.issn=2576-3202&rft.eissn=2576-3202&rft_id=info:doi/10.1109/TMRB.2021.3118293&rft_dat=%3Cproquest_RIE%3E2599205723%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599205723&rft_id=info:pmid/&rft_ieee_id=9560160&rfr_iscdi=true |