Robot-Assisted Optical Ultrasound Scanning

Optical ultrasound, where ultrasound is both generated and received using light, can be integrated in very small diameter instruments making it ideally suited to minimally invasive interventions. One-dimensional information can be obtained using a single pair of optical fibres comprising of a source...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical robotics and bionics 2021-11, Vol.3 (4), p.948-958
Hauptverfasser: Dwyer, George, Alles, Erwin J., Colchester, Richard J., Iyengar, Keshav, Desjardins, Adrien E., Stoyanov, Danail
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 958
container_issue 4
container_start_page 948
container_title IEEE transactions on medical robotics and bionics
container_volume 3
creator Dwyer, George
Alles, Erwin J.
Colchester, Richard J.
Iyengar, Keshav
Desjardins, Adrien E.
Stoyanov, Danail
description Optical ultrasound, where ultrasound is both generated and received using light, can be integrated in very small diameter instruments making it ideally suited to minimally invasive interventions. One-dimensional information can be obtained using a single pair of optical fibres comprising of a source and detector but this can be difficult to interpret clinically. In this paper, we present a robotic-assisted scanning solution where a concentric tube robot manipulates an optical ultrasound probe along a consistent trajectory. A torque coil is utilized as a buffer between the curved nitinol tube and the probe to prevent torsion on the probe and maintain the axial orientation of the probe while the tube is rotating. The design and control of the scanning mechanism are presented along with the integration of the mechanism with a fibre-based imaging probe. Trajectory repeatability is assessed using electromagnetic tracking and a technique to calibrate the transformation between imaging and robot coordinates using a known model is presented. Finally, we show example images of 3D printed phantoms generated by collecting multiple OpUS A-scans within the same 3D scene to illustrate how robot-assisted scanning can expand the field of view.
doi_str_mv 10.1109/TMRB.2021.3118293
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMRB_2021_3118293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9560160</ieee_id><sourcerecordid>2599205723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-2caad0c6c6e361e92c0f4915d6150866654b517008746e6d5fc39cb925a375243</originalsourceid><addsrcrecordid>eNpNkNFKwzAUhoMoOOYeQLwpeCe0niTNaXM5h1NhMpjbdUjTVDpqW5Pswre3pUO8OofD958fPkJuKSSUgnzcv--eEgaMJpzSnEl-QWZMZBjz4Xj5b78mC--PAAMqIOM4Iw-7ruhCvPS-9sGW0bYPtdFNdGiC0747tWX0YXTb1u3nDbmqdOPt4jzn5LB-3q9e48325W213MSGcwwxM1qXYNCg5UitZAaqVFJR4tCZI6JIC0EzgDxL0WIpKsOlKSQTmmeCpXxO7qe_veu-T9YHdexOrh0qFRNSMhAZ4wNFJ8q4zntnK9W7-ku7H0VBjVbUaEWNVtTZypC5mzK1tfaPlwKBIvBf4MJbAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599205723</pqid></control><display><type>article</type><title>Robot-Assisted Optical Ultrasound Scanning</title><source>IEEE Electronic Library (IEL)</source><creator>Dwyer, George ; Alles, Erwin J. ; Colchester, Richard J. ; Iyengar, Keshav ; Desjardins, Adrien E. ; Stoyanov, Danail</creator><creatorcontrib>Dwyer, George ; Alles, Erwin J. ; Colchester, Richard J. ; Iyengar, Keshav ; Desjardins, Adrien E. ; Stoyanov, Danail</creatorcontrib><description>Optical ultrasound, where ultrasound is both generated and received using light, can be integrated in very small diameter instruments making it ideally suited to minimally invasive interventions. One-dimensional information can be obtained using a single pair of optical fibres comprising of a source and detector but this can be difficult to interpret clinically. In this paper, we present a robotic-assisted scanning solution where a concentric tube robot manipulates an optical ultrasound probe along a consistent trajectory. A torque coil is utilized as a buffer between the curved nitinol tube and the probe to prevent torsion on the probe and maintain the axial orientation of the probe while the tube is rotating. The design and control of the scanning mechanism are presented along with the integration of the mechanism with a fibre-based imaging probe. Trajectory repeatability is assessed using electromagnetic tracking and a technique to calibrate the transformation between imaging and robot coordinates using a known model is presented. Finally, we show example images of 3D printed phantoms generated by collecting multiple OpUS A-scans within the same 3D scene to illustrate how robot-assisted scanning can expand the field of view.</description><identifier>ISSN: 2576-3202</identifier><identifier>EISSN: 2576-3202</identifier><identifier>DOI: 10.1109/TMRB.2021.3118293</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Biomedical imaging ; Coils ; Diameters ; Field of view ; Medical robotics ; Nickel titanides ; Optical fibers ; Optical Ultrasound ; Probes ; Robot-assisted Imaging ; Robots ; Scanning ; Three dimensional printing ; Trajectory analysis ; Ultrasonic imaging</subject><ispartof>IEEE transactions on medical robotics and bionics, 2021-11, Vol.3 (4), p.948-958</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-2caad0c6c6e361e92c0f4915d6150866654b517008746e6d5fc39cb925a375243</citedby><cites>FETCH-LOGICAL-c336t-2caad0c6c6e361e92c0f4915d6150866654b517008746e6d5fc39cb925a375243</cites><orcidid>0000-0002-1658-4421 ; 0000-0001-8657-0546 ; 0000-0002-0980-3227 ; 0000-0001-7020-9537 ; 0000-0001-8019-7680 ; 0000-0002-1932-1811</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9560160$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9560160$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dwyer, George</creatorcontrib><creatorcontrib>Alles, Erwin J.</creatorcontrib><creatorcontrib>Colchester, Richard J.</creatorcontrib><creatorcontrib>Iyengar, Keshav</creatorcontrib><creatorcontrib>Desjardins, Adrien E.</creatorcontrib><creatorcontrib>Stoyanov, Danail</creatorcontrib><title>Robot-Assisted Optical Ultrasound Scanning</title><title>IEEE transactions on medical robotics and bionics</title><addtitle>TMRB</addtitle><description>Optical ultrasound, where ultrasound is both generated and received using light, can be integrated in very small diameter instruments making it ideally suited to minimally invasive interventions. One-dimensional information can be obtained using a single pair of optical fibres comprising of a source and detector but this can be difficult to interpret clinically. In this paper, we present a robotic-assisted scanning solution where a concentric tube robot manipulates an optical ultrasound probe along a consistent trajectory. A torque coil is utilized as a buffer between the curved nitinol tube and the probe to prevent torsion on the probe and maintain the axial orientation of the probe while the tube is rotating. The design and control of the scanning mechanism are presented along with the integration of the mechanism with a fibre-based imaging probe. Trajectory repeatability is assessed using electromagnetic tracking and a technique to calibrate the transformation between imaging and robot coordinates using a known model is presented. Finally, we show example images of 3D printed phantoms generated by collecting multiple OpUS A-scans within the same 3D scene to illustrate how robot-assisted scanning can expand the field of view.</description><subject>Biomedical imaging</subject><subject>Coils</subject><subject>Diameters</subject><subject>Field of view</subject><subject>Medical robotics</subject><subject>Nickel titanides</subject><subject>Optical fibers</subject><subject>Optical Ultrasound</subject><subject>Probes</subject><subject>Robot-assisted Imaging</subject><subject>Robots</subject><subject>Scanning</subject><subject>Three dimensional printing</subject><subject>Trajectory analysis</subject><subject>Ultrasonic imaging</subject><issn>2576-3202</issn><issn>2576-3202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkNFKwzAUhoMoOOYeQLwpeCe0niTNaXM5h1NhMpjbdUjTVDpqW5Pswre3pUO8OofD958fPkJuKSSUgnzcv--eEgaMJpzSnEl-QWZMZBjz4Xj5b78mC--PAAMqIOM4Iw-7ruhCvPS-9sGW0bYPtdFNdGiC0747tWX0YXTb1u3nDbmqdOPt4jzn5LB-3q9e48325W213MSGcwwxM1qXYNCg5UitZAaqVFJR4tCZI6JIC0EzgDxL0WIpKsOlKSQTmmeCpXxO7qe_veu-T9YHdexOrh0qFRNSMhAZ4wNFJ8q4zntnK9W7-ku7H0VBjVbUaEWNVtTZypC5mzK1tfaPlwKBIvBf4MJbAw</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Dwyer, George</creator><creator>Alles, Erwin J.</creator><creator>Colchester, Richard J.</creator><creator>Iyengar, Keshav</creator><creator>Desjardins, Adrien E.</creator><creator>Stoyanov, Danail</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>K9.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1658-4421</orcidid><orcidid>https://orcid.org/0000-0001-8657-0546</orcidid><orcidid>https://orcid.org/0000-0002-0980-3227</orcidid><orcidid>https://orcid.org/0000-0001-7020-9537</orcidid><orcidid>https://orcid.org/0000-0001-8019-7680</orcidid><orcidid>https://orcid.org/0000-0002-1932-1811</orcidid></search><sort><creationdate>20211101</creationdate><title>Robot-Assisted Optical Ultrasound Scanning</title><author>Dwyer, George ; Alles, Erwin J. ; Colchester, Richard J. ; Iyengar, Keshav ; Desjardins, Adrien E. ; Stoyanov, Danail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-2caad0c6c6e361e92c0f4915d6150866654b517008746e6d5fc39cb925a375243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomedical imaging</topic><topic>Coils</topic><topic>Diameters</topic><topic>Field of view</topic><topic>Medical robotics</topic><topic>Nickel titanides</topic><topic>Optical fibers</topic><topic>Optical Ultrasound</topic><topic>Probes</topic><topic>Robot-assisted Imaging</topic><topic>Robots</topic><topic>Scanning</topic><topic>Three dimensional printing</topic><topic>Trajectory analysis</topic><topic>Ultrasonic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dwyer, George</creatorcontrib><creatorcontrib>Alles, Erwin J.</creatorcontrib><creatorcontrib>Colchester, Richard J.</creatorcontrib><creatorcontrib>Iyengar, Keshav</creatorcontrib><creatorcontrib>Desjardins, Adrien E.</creatorcontrib><creatorcontrib>Stoyanov, Danail</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on medical robotics and bionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dwyer, George</au><au>Alles, Erwin J.</au><au>Colchester, Richard J.</au><au>Iyengar, Keshav</au><au>Desjardins, Adrien E.</au><au>Stoyanov, Danail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robot-Assisted Optical Ultrasound Scanning</atitle><jtitle>IEEE transactions on medical robotics and bionics</jtitle><stitle>TMRB</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>3</volume><issue>4</issue><spage>948</spage><epage>958</epage><pages>948-958</pages><issn>2576-3202</issn><eissn>2576-3202</eissn><abstract>Optical ultrasound, where ultrasound is both generated and received using light, can be integrated in very small diameter instruments making it ideally suited to minimally invasive interventions. One-dimensional information can be obtained using a single pair of optical fibres comprising of a source and detector but this can be difficult to interpret clinically. In this paper, we present a robotic-assisted scanning solution where a concentric tube robot manipulates an optical ultrasound probe along a consistent trajectory. A torque coil is utilized as a buffer between the curved nitinol tube and the probe to prevent torsion on the probe and maintain the axial orientation of the probe while the tube is rotating. The design and control of the scanning mechanism are presented along with the integration of the mechanism with a fibre-based imaging probe. Trajectory repeatability is assessed using electromagnetic tracking and a technique to calibrate the transformation between imaging and robot coordinates using a known model is presented. Finally, we show example images of 3D printed phantoms generated by collecting multiple OpUS A-scans within the same 3D scene to illustrate how robot-assisted scanning can expand the field of view.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMRB.2021.3118293</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1658-4421</orcidid><orcidid>https://orcid.org/0000-0001-8657-0546</orcidid><orcidid>https://orcid.org/0000-0002-0980-3227</orcidid><orcidid>https://orcid.org/0000-0001-7020-9537</orcidid><orcidid>https://orcid.org/0000-0001-8019-7680</orcidid><orcidid>https://orcid.org/0000-0002-1932-1811</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2576-3202
ispartof IEEE transactions on medical robotics and bionics, 2021-11, Vol.3 (4), p.948-958
issn 2576-3202
2576-3202
language eng
recordid cdi_crossref_primary_10_1109_TMRB_2021_3118293
source IEEE Electronic Library (IEL)
subjects Biomedical imaging
Coils
Diameters
Field of view
Medical robotics
Nickel titanides
Optical fibers
Optical Ultrasound
Probes
Robot-assisted Imaging
Robots
Scanning
Three dimensional printing
Trajectory analysis
Ultrasonic imaging
title Robot-Assisted Optical Ultrasound Scanning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A45%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robot-Assisted%20Optical%20Ultrasound%20Scanning&rft.jtitle=IEEE%20transactions%20on%20medical%20robotics%20and%20bionics&rft.au=Dwyer,%20George&rft.date=2021-11-01&rft.volume=3&rft.issue=4&rft.spage=948&rft.epage=958&rft.pages=948-958&rft.issn=2576-3202&rft.eissn=2576-3202&rft_id=info:doi/10.1109/TMRB.2021.3118293&rft_dat=%3Cproquest_RIE%3E2599205723%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599205723&rft_id=info:pmid/&rft_ieee_id=9560160&rfr_iscdi=true