Texture-Content Dual Guided Network for Visible and Infrared Image Fusion
The preservation and enhancement of texture information is crucial for the fusion of visible and infrared images. However, most current deep neural network (DNN)-based methods ignore the differences between texture and content, leading to unsatisfactory fusion results. To further enhance the quality...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on multimedia 2025, p.1-15 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on multimedia |
container_volume | |
creator | Zhang, Kai Sun, Ludan Yan, Jun Wan, Wenbo Sun, Jiande Yang, Shuyuan Zhang, Huaxiang |
description | The preservation and enhancement of texture information is crucial for the fusion of visible and infrared images. However, most current deep neural network (DNN)-based methods ignore the differences between texture and content, leading to unsatisfactory fusion results. To further enhance the quality of fused images, we propose a texture-content dual guided (TCDG-Net) network, which produces the fused image by the guidance inferred from source images. Specifically, a texture map is first estimated jointly by combining the gradient information of visible and infrared images. Then, the features learned by the shallow feature extraction (SFE) module are enhanced with the guidance of the texture map. To effectively model the texture information in the long-range dependencies, we design the texture-guided enhancement (TGE) module, in which the texture-guided attention mechanism is utilized to capture the global similarity of the texture regions in source images. Meanwhile, we employ the content-guided enhancement (CGE) module to refine the content regions in the fused result by utilizing the complement of the texture map. Finally, the fused image is generated by adaptively integrating the enhanced texture and content information. Extensive experiments on three benchmark datasets demonstrate the effectiveness of the proposed TCDG-Net in terms of qualitative and quantitative evaluations. Besides, the fused images generated by our proposed TCDG-Net also show better performance in downstream tasks, such as objection detection and semantic segmentation. |
doi_str_mv | 10.1109/TMM.2024.3521840 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMM_2024_3521840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10814989</ieee_id><sourcerecordid>10_1109_TMM_2024_3521840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c629-60ac86e0aaee4386ba32f565f85f7b15ca54e4ba0e69a165634e7cb9c5b18a993</originalsourceid><addsrcrecordid>eNpNkLFOwzAURS0EEqWwMzD4B1KeHduxR1RoidTCErFGL8kzCrQJshMBf0-qdmC6d7jnDoexWwELIcDdF9vtQoJUi1RLYRWcsZlwSiQAWXY-dS0hcVLAJbuK8QNAKA3ZjOUF_QxjoGTZdwN1A38cccfXY9tQw19o-O7DJ_d94G9tbKsdcewannc-YJgG-R7fia_G2PbdNbvwuIt0c8o5K1ZPxfI52byu8-XDJqmNdIkBrK0hQCRSqTUVptJro73VPquErlErUhUCGYfCaJMqyurK1boSFp1L5wyOt3XoYwzky6_Q7jH8lgLKg4lyMlEeTJQnExNyd0RaIvo3t0I569I_6RlaBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Texture-Content Dual Guided Network for Visible and Infrared Image Fusion</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Kai ; Sun, Ludan ; Yan, Jun ; Wan, Wenbo ; Sun, Jiande ; Yang, Shuyuan ; Zhang, Huaxiang</creator><creatorcontrib>Zhang, Kai ; Sun, Ludan ; Yan, Jun ; Wan, Wenbo ; Sun, Jiande ; Yang, Shuyuan ; Zhang, Huaxiang</creatorcontrib><description>The preservation and enhancement of texture information is crucial for the fusion of visible and infrared images. However, most current deep neural network (DNN)-based methods ignore the differences between texture and content, leading to unsatisfactory fusion results. To further enhance the quality of fused images, we propose a texture-content dual guided (TCDG-Net) network, which produces the fused image by the guidance inferred from source images. Specifically, a texture map is first estimated jointly by combining the gradient information of visible and infrared images. Then, the features learned by the shallow feature extraction (SFE) module are enhanced with the guidance of the texture map. To effectively model the texture information in the long-range dependencies, we design the texture-guided enhancement (TGE) module, in which the texture-guided attention mechanism is utilized to capture the global similarity of the texture regions in source images. Meanwhile, we employ the content-guided enhancement (CGE) module to refine the content regions in the fused result by utilizing the complement of the texture map. Finally, the fused image is generated by adaptively integrating the enhanced texture and content information. Extensive experiments on three benchmark datasets demonstrate the effectiveness of the proposed TCDG-Net in terms of qualitative and quantitative evaluations. Besides, the fused images generated by our proposed TCDG-Net also show better performance in downstream tasks, such as objection detection and semantic segmentation.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2024.3521840</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data mining ; Feature extraction ; Generative adversarial networks ; Image edge detection ; Image fusion ; Image reconstruction ; infrared image ; Semantic segmentation ; Sun ; texture-guided attention ; transformer ; Transformers ; Transforms ; visible image</subject><ispartof>IEEE transactions on multimedia, 2025, p.1-15</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6157-2051 ; 0000-0002-4796-5737 ; 0000-0002-9218-5916 ; 0009-0008-2842-0855 ; 0000-0003-1447-0524 ; 0009-0008-2183-0173 ; 0000-0001-6259-7533</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10814989$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10814989$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Sun, Ludan</creatorcontrib><creatorcontrib>Yan, Jun</creatorcontrib><creatorcontrib>Wan, Wenbo</creatorcontrib><creatorcontrib>Sun, Jiande</creatorcontrib><creatorcontrib>Yang, Shuyuan</creatorcontrib><creatorcontrib>Zhang, Huaxiang</creatorcontrib><title>Texture-Content Dual Guided Network for Visible and Infrared Image Fusion</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>The preservation and enhancement of texture information is crucial for the fusion of visible and infrared images. However, most current deep neural network (DNN)-based methods ignore the differences between texture and content, leading to unsatisfactory fusion results. To further enhance the quality of fused images, we propose a texture-content dual guided (TCDG-Net) network, which produces the fused image by the guidance inferred from source images. Specifically, a texture map is first estimated jointly by combining the gradient information of visible and infrared images. Then, the features learned by the shallow feature extraction (SFE) module are enhanced with the guidance of the texture map. To effectively model the texture information in the long-range dependencies, we design the texture-guided enhancement (TGE) module, in which the texture-guided attention mechanism is utilized to capture the global similarity of the texture regions in source images. Meanwhile, we employ the content-guided enhancement (CGE) module to refine the content regions in the fused result by utilizing the complement of the texture map. Finally, the fused image is generated by adaptively integrating the enhanced texture and content information. Extensive experiments on three benchmark datasets demonstrate the effectiveness of the proposed TCDG-Net in terms of qualitative and quantitative evaluations. Besides, the fused images generated by our proposed TCDG-Net also show better performance in downstream tasks, such as objection detection and semantic segmentation.</description><subject>Data mining</subject><subject>Feature extraction</subject><subject>Generative adversarial networks</subject><subject>Image edge detection</subject><subject>Image fusion</subject><subject>Image reconstruction</subject><subject>infrared image</subject><subject>Semantic segmentation</subject><subject>Sun</subject><subject>texture-guided attention</subject><subject>transformer</subject><subject>Transformers</subject><subject>Transforms</subject><subject>visible image</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkLFOwzAURS0EEqWwMzD4B1KeHduxR1RoidTCErFGL8kzCrQJshMBf0-qdmC6d7jnDoexWwELIcDdF9vtQoJUi1RLYRWcsZlwSiQAWXY-dS0hcVLAJbuK8QNAKA3ZjOUF_QxjoGTZdwN1A38cccfXY9tQw19o-O7DJ_d94G9tbKsdcewannc-YJgG-R7fia_G2PbdNbvwuIt0c8o5K1ZPxfI52byu8-XDJqmNdIkBrK0hQCRSqTUVptJro73VPquErlErUhUCGYfCaJMqyurK1boSFp1L5wyOt3XoYwzky6_Q7jH8lgLKg4lyMlEeTJQnExNyd0RaIvo3t0I569I_6RlaBA</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Zhang, Kai</creator><creator>Sun, Ludan</creator><creator>Yan, Jun</creator><creator>Wan, Wenbo</creator><creator>Sun, Jiande</creator><creator>Yang, Shuyuan</creator><creator>Zhang, Huaxiang</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6157-2051</orcidid><orcidid>https://orcid.org/0000-0002-4796-5737</orcidid><orcidid>https://orcid.org/0000-0002-9218-5916</orcidid><orcidid>https://orcid.org/0009-0008-2842-0855</orcidid><orcidid>https://orcid.org/0000-0003-1447-0524</orcidid><orcidid>https://orcid.org/0009-0008-2183-0173</orcidid><orcidid>https://orcid.org/0000-0001-6259-7533</orcidid></search><sort><creationdate>2025</creationdate><title>Texture-Content Dual Guided Network for Visible and Infrared Image Fusion</title><author>Zhang, Kai ; Sun, Ludan ; Yan, Jun ; Wan, Wenbo ; Sun, Jiande ; Yang, Shuyuan ; Zhang, Huaxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c629-60ac86e0aaee4386ba32f565f85f7b15ca54e4ba0e69a165634e7cb9c5b18a993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Data mining</topic><topic>Feature extraction</topic><topic>Generative adversarial networks</topic><topic>Image edge detection</topic><topic>Image fusion</topic><topic>Image reconstruction</topic><topic>infrared image</topic><topic>Semantic segmentation</topic><topic>Sun</topic><topic>texture-guided attention</topic><topic>transformer</topic><topic>Transformers</topic><topic>Transforms</topic><topic>visible image</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Sun, Ludan</creatorcontrib><creatorcontrib>Yan, Jun</creatorcontrib><creatorcontrib>Wan, Wenbo</creatorcontrib><creatorcontrib>Sun, Jiande</creatorcontrib><creatorcontrib>Yang, Shuyuan</creatorcontrib><creatorcontrib>Zhang, Huaxiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Kai</au><au>Sun, Ludan</au><au>Yan, Jun</au><au>Wan, Wenbo</au><au>Sun, Jiande</au><au>Yang, Shuyuan</au><au>Zhang, Huaxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Texture-Content Dual Guided Network for Visible and Infrared Image Fusion</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2025</date><risdate>2025</risdate><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>The preservation and enhancement of texture information is crucial for the fusion of visible and infrared images. However, most current deep neural network (DNN)-based methods ignore the differences between texture and content, leading to unsatisfactory fusion results. To further enhance the quality of fused images, we propose a texture-content dual guided (TCDG-Net) network, which produces the fused image by the guidance inferred from source images. Specifically, a texture map is first estimated jointly by combining the gradient information of visible and infrared images. Then, the features learned by the shallow feature extraction (SFE) module are enhanced with the guidance of the texture map. To effectively model the texture information in the long-range dependencies, we design the texture-guided enhancement (TGE) module, in which the texture-guided attention mechanism is utilized to capture the global similarity of the texture regions in source images. Meanwhile, we employ the content-guided enhancement (CGE) module to refine the content regions in the fused result by utilizing the complement of the texture map. Finally, the fused image is generated by adaptively integrating the enhanced texture and content information. Extensive experiments on three benchmark datasets demonstrate the effectiveness of the proposed TCDG-Net in terms of qualitative and quantitative evaluations. Besides, the fused images generated by our proposed TCDG-Net also show better performance in downstream tasks, such as objection detection and semantic segmentation.</abstract><pub>IEEE</pub><doi>10.1109/TMM.2024.3521840</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6157-2051</orcidid><orcidid>https://orcid.org/0000-0002-4796-5737</orcidid><orcidid>https://orcid.org/0000-0002-9218-5916</orcidid><orcidid>https://orcid.org/0009-0008-2842-0855</orcidid><orcidid>https://orcid.org/0000-0003-1447-0524</orcidid><orcidid>https://orcid.org/0009-0008-2183-0173</orcidid><orcidid>https://orcid.org/0000-0001-6259-7533</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-9210 |
ispartof | IEEE transactions on multimedia, 2025, p.1-15 |
issn | 1520-9210 1941-0077 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMM_2024_3521840 |
source | IEEE Electronic Library (IEL) |
subjects | Data mining Feature extraction Generative adversarial networks Image edge detection Image fusion Image reconstruction infrared image Semantic segmentation Sun texture-guided attention transformer Transformers Transforms visible image |
title | Texture-Content Dual Guided Network for Visible and Infrared Image Fusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A51%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Texture-Content%20Dual%20Guided%20Network%20for%20Visible%20and%20Infrared%20Image%20Fusion&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Zhang,%20Kai&rft.date=2025&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2024.3521840&rft_dat=%3Ccrossref_RIE%3E10_1109_TMM_2024_3521840%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10814989&rfr_iscdi=true |