Texture-Content Dual Guided Network for Visible and Infrared Image Fusion

The preservation and enhancement of texture information is crucial for the fusion of visible and infrared images. However, most current deep neural network (DNN)-based methods ignore the differences between texture and content, leading to unsatisfactory fusion results. To further enhance the quality...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on multimedia 2025, p.1-15
Hauptverfasser: Zhang, Kai, Sun, Ludan, Yan, Jun, Wan, Wenbo, Sun, Jiande, Yang, Shuyuan, Zhang, Huaxiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue
container_start_page 1
container_title IEEE transactions on multimedia
container_volume
creator Zhang, Kai
Sun, Ludan
Yan, Jun
Wan, Wenbo
Sun, Jiande
Yang, Shuyuan
Zhang, Huaxiang
description The preservation and enhancement of texture information is crucial for the fusion of visible and infrared images. However, most current deep neural network (DNN)-based methods ignore the differences between texture and content, leading to unsatisfactory fusion results. To further enhance the quality of fused images, we propose a texture-content dual guided (TCDG-Net) network, which produces the fused image by the guidance inferred from source images. Specifically, a texture map is first estimated jointly by combining the gradient information of visible and infrared images. Then, the features learned by the shallow feature extraction (SFE) module are enhanced with the guidance of the texture map. To effectively model the texture information in the long-range dependencies, we design the texture-guided enhancement (TGE) module, in which the texture-guided attention mechanism is utilized to capture the global similarity of the texture regions in source images. Meanwhile, we employ the content-guided enhancement (CGE) module to refine the content regions in the fused result by utilizing the complement of the texture map. Finally, the fused image is generated by adaptively integrating the enhanced texture and content information. Extensive experiments on three benchmark datasets demonstrate the effectiveness of the proposed TCDG-Net in terms of qualitative and quantitative evaluations. Besides, the fused images generated by our proposed TCDG-Net also show better performance in downstream tasks, such as objection detection and semantic segmentation.
doi_str_mv 10.1109/TMM.2024.3521840
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMM_2024_3521840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10814989</ieee_id><sourcerecordid>10_1109_TMM_2024_3521840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c629-60ac86e0aaee4386ba32f565f85f7b15ca54e4ba0e69a165634e7cb9c5b18a993</originalsourceid><addsrcrecordid>eNpNkLFOwzAURS0EEqWwMzD4B1KeHduxR1RoidTCErFGL8kzCrQJshMBf0-qdmC6d7jnDoexWwELIcDdF9vtQoJUi1RLYRWcsZlwSiQAWXY-dS0hcVLAJbuK8QNAKA3ZjOUF_QxjoGTZdwN1A38cccfXY9tQw19o-O7DJ_d94G9tbKsdcewannc-YJgG-R7fia_G2PbdNbvwuIt0c8o5K1ZPxfI52byu8-XDJqmNdIkBrK0hQCRSqTUVptJro73VPquErlErUhUCGYfCaJMqyurK1boSFp1L5wyOt3XoYwzky6_Q7jH8lgLKg4lyMlEeTJQnExNyd0RaIvo3t0I569I_6RlaBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Texture-Content Dual Guided Network for Visible and Infrared Image Fusion</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Kai ; Sun, Ludan ; Yan, Jun ; Wan, Wenbo ; Sun, Jiande ; Yang, Shuyuan ; Zhang, Huaxiang</creator><creatorcontrib>Zhang, Kai ; Sun, Ludan ; Yan, Jun ; Wan, Wenbo ; Sun, Jiande ; Yang, Shuyuan ; Zhang, Huaxiang</creatorcontrib><description>The preservation and enhancement of texture information is crucial for the fusion of visible and infrared images. However, most current deep neural network (DNN)-based methods ignore the differences between texture and content, leading to unsatisfactory fusion results. To further enhance the quality of fused images, we propose a texture-content dual guided (TCDG-Net) network, which produces the fused image by the guidance inferred from source images. Specifically, a texture map is first estimated jointly by combining the gradient information of visible and infrared images. Then, the features learned by the shallow feature extraction (SFE) module are enhanced with the guidance of the texture map. To effectively model the texture information in the long-range dependencies, we design the texture-guided enhancement (TGE) module, in which the texture-guided attention mechanism is utilized to capture the global similarity of the texture regions in source images. Meanwhile, we employ the content-guided enhancement (CGE) module to refine the content regions in the fused result by utilizing the complement of the texture map. Finally, the fused image is generated by adaptively integrating the enhanced texture and content information. Extensive experiments on three benchmark datasets demonstrate the effectiveness of the proposed TCDG-Net in terms of qualitative and quantitative evaluations. Besides, the fused images generated by our proposed TCDG-Net also show better performance in downstream tasks, such as objection detection and semantic segmentation.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2024.3521840</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data mining ; Feature extraction ; Generative adversarial networks ; Image edge detection ; Image fusion ; Image reconstruction ; infrared image ; Semantic segmentation ; Sun ; texture-guided attention ; transformer ; Transformers ; Transforms ; visible image</subject><ispartof>IEEE transactions on multimedia, 2025, p.1-15</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6157-2051 ; 0000-0002-4796-5737 ; 0000-0002-9218-5916 ; 0009-0008-2842-0855 ; 0000-0003-1447-0524 ; 0009-0008-2183-0173 ; 0000-0001-6259-7533</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10814989$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10814989$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Sun, Ludan</creatorcontrib><creatorcontrib>Yan, Jun</creatorcontrib><creatorcontrib>Wan, Wenbo</creatorcontrib><creatorcontrib>Sun, Jiande</creatorcontrib><creatorcontrib>Yang, Shuyuan</creatorcontrib><creatorcontrib>Zhang, Huaxiang</creatorcontrib><title>Texture-Content Dual Guided Network for Visible and Infrared Image Fusion</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>The preservation and enhancement of texture information is crucial for the fusion of visible and infrared images. However, most current deep neural network (DNN)-based methods ignore the differences between texture and content, leading to unsatisfactory fusion results. To further enhance the quality of fused images, we propose a texture-content dual guided (TCDG-Net) network, which produces the fused image by the guidance inferred from source images. Specifically, a texture map is first estimated jointly by combining the gradient information of visible and infrared images. Then, the features learned by the shallow feature extraction (SFE) module are enhanced with the guidance of the texture map. To effectively model the texture information in the long-range dependencies, we design the texture-guided enhancement (TGE) module, in which the texture-guided attention mechanism is utilized to capture the global similarity of the texture regions in source images. Meanwhile, we employ the content-guided enhancement (CGE) module to refine the content regions in the fused result by utilizing the complement of the texture map. Finally, the fused image is generated by adaptively integrating the enhanced texture and content information. Extensive experiments on three benchmark datasets demonstrate the effectiveness of the proposed TCDG-Net in terms of qualitative and quantitative evaluations. Besides, the fused images generated by our proposed TCDG-Net also show better performance in downstream tasks, such as objection detection and semantic segmentation.</description><subject>Data mining</subject><subject>Feature extraction</subject><subject>Generative adversarial networks</subject><subject>Image edge detection</subject><subject>Image fusion</subject><subject>Image reconstruction</subject><subject>infrared image</subject><subject>Semantic segmentation</subject><subject>Sun</subject><subject>texture-guided attention</subject><subject>transformer</subject><subject>Transformers</subject><subject>Transforms</subject><subject>visible image</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkLFOwzAURS0EEqWwMzD4B1KeHduxR1RoidTCErFGL8kzCrQJshMBf0-qdmC6d7jnDoexWwELIcDdF9vtQoJUi1RLYRWcsZlwSiQAWXY-dS0hcVLAJbuK8QNAKA3ZjOUF_QxjoGTZdwN1A38cccfXY9tQw19o-O7DJ_d94G9tbKsdcewannc-YJgG-R7fia_G2PbdNbvwuIt0c8o5K1ZPxfI52byu8-XDJqmNdIkBrK0hQCRSqTUVptJro73VPquErlErUhUCGYfCaJMqyurK1boSFp1L5wyOt3XoYwzky6_Q7jH8lgLKg4lyMlEeTJQnExNyd0RaIvo3t0I569I_6RlaBA</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Zhang, Kai</creator><creator>Sun, Ludan</creator><creator>Yan, Jun</creator><creator>Wan, Wenbo</creator><creator>Sun, Jiande</creator><creator>Yang, Shuyuan</creator><creator>Zhang, Huaxiang</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6157-2051</orcidid><orcidid>https://orcid.org/0000-0002-4796-5737</orcidid><orcidid>https://orcid.org/0000-0002-9218-5916</orcidid><orcidid>https://orcid.org/0009-0008-2842-0855</orcidid><orcidid>https://orcid.org/0000-0003-1447-0524</orcidid><orcidid>https://orcid.org/0009-0008-2183-0173</orcidid><orcidid>https://orcid.org/0000-0001-6259-7533</orcidid></search><sort><creationdate>2025</creationdate><title>Texture-Content Dual Guided Network for Visible and Infrared Image Fusion</title><author>Zhang, Kai ; Sun, Ludan ; Yan, Jun ; Wan, Wenbo ; Sun, Jiande ; Yang, Shuyuan ; Zhang, Huaxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c629-60ac86e0aaee4386ba32f565f85f7b15ca54e4ba0e69a165634e7cb9c5b18a993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Data mining</topic><topic>Feature extraction</topic><topic>Generative adversarial networks</topic><topic>Image edge detection</topic><topic>Image fusion</topic><topic>Image reconstruction</topic><topic>infrared image</topic><topic>Semantic segmentation</topic><topic>Sun</topic><topic>texture-guided attention</topic><topic>transformer</topic><topic>Transformers</topic><topic>Transforms</topic><topic>visible image</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Sun, Ludan</creatorcontrib><creatorcontrib>Yan, Jun</creatorcontrib><creatorcontrib>Wan, Wenbo</creatorcontrib><creatorcontrib>Sun, Jiande</creatorcontrib><creatorcontrib>Yang, Shuyuan</creatorcontrib><creatorcontrib>Zhang, Huaxiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Kai</au><au>Sun, Ludan</au><au>Yan, Jun</au><au>Wan, Wenbo</au><au>Sun, Jiande</au><au>Yang, Shuyuan</au><au>Zhang, Huaxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Texture-Content Dual Guided Network for Visible and Infrared Image Fusion</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2025</date><risdate>2025</risdate><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>The preservation and enhancement of texture information is crucial for the fusion of visible and infrared images. However, most current deep neural network (DNN)-based methods ignore the differences between texture and content, leading to unsatisfactory fusion results. To further enhance the quality of fused images, we propose a texture-content dual guided (TCDG-Net) network, which produces the fused image by the guidance inferred from source images. Specifically, a texture map is first estimated jointly by combining the gradient information of visible and infrared images. Then, the features learned by the shallow feature extraction (SFE) module are enhanced with the guidance of the texture map. To effectively model the texture information in the long-range dependencies, we design the texture-guided enhancement (TGE) module, in which the texture-guided attention mechanism is utilized to capture the global similarity of the texture regions in source images. Meanwhile, we employ the content-guided enhancement (CGE) module to refine the content regions in the fused result by utilizing the complement of the texture map. Finally, the fused image is generated by adaptively integrating the enhanced texture and content information. Extensive experiments on three benchmark datasets demonstrate the effectiveness of the proposed TCDG-Net in terms of qualitative and quantitative evaluations. Besides, the fused images generated by our proposed TCDG-Net also show better performance in downstream tasks, such as objection detection and semantic segmentation.</abstract><pub>IEEE</pub><doi>10.1109/TMM.2024.3521840</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6157-2051</orcidid><orcidid>https://orcid.org/0000-0002-4796-5737</orcidid><orcidid>https://orcid.org/0000-0002-9218-5916</orcidid><orcidid>https://orcid.org/0009-0008-2842-0855</orcidid><orcidid>https://orcid.org/0000-0003-1447-0524</orcidid><orcidid>https://orcid.org/0009-0008-2183-0173</orcidid><orcidid>https://orcid.org/0000-0001-6259-7533</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-9210
ispartof IEEE transactions on multimedia, 2025, p.1-15
issn 1520-9210
1941-0077
language eng
recordid cdi_crossref_primary_10_1109_TMM_2024_3521840
source IEEE Electronic Library (IEL)
subjects Data mining
Feature extraction
Generative adversarial networks
Image edge detection
Image fusion
Image reconstruction
infrared image
Semantic segmentation
Sun
texture-guided attention
transformer
Transformers
Transforms
visible image
title Texture-Content Dual Guided Network for Visible and Infrared Image Fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A51%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Texture-Content%20Dual%20Guided%20Network%20for%20Visible%20and%20Infrared%20Image%20Fusion&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Zhang,%20Kai&rft.date=2025&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2024.3521840&rft_dat=%3Ccrossref_RIE%3E10_1109_TMM_2024_3521840%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10814989&rfr_iscdi=true