Robust Feature Matching via Graph Neighborhood Motion Consensus

In this paper, we propose an effective method for mismatch removal, termed as graph neighborhood motion consensus, to address the feature matching problem which plays a pivotal role in various computer vision tasks. In our method, we convert each feature correspondence into a motion field sample and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on multimedia 2024, Vol.26, p.9790-9803
Hauptverfasser: Huang, Jun, Li, Honglin, Gong, Yijia, Fan, Fan, Ma, Yong, Du, Qinglei, Ma, Jiayi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9803
container_issue
container_start_page 9790
container_title IEEE transactions on multimedia
container_volume 26
creator Huang, Jun
Li, Honglin
Gong, Yijia
Fan, Fan
Ma, Yong
Du, Qinglei
Ma, Jiayi
description In this paper, we propose an effective method for mismatch removal, termed as graph neighborhood motion consensus, to address the feature matching problem which plays a pivotal role in various computer vision tasks. In our method, we convert each feature correspondence into a motion field sample and model it with the probabilistic graphical model (PGM). To differentiate mismatches from true matches, we firstly design a metric based on neighborhood topology consensus and neighborhood interaction to evaluate the correctness of each match. We also design a variance-based similarity search module to make the information used more reliable for better matching performance. To derive the solution of PGM, we build a model to transform the problem into an integer quadratic programming problem and obtain its closed-form solution with linear time complexity. Extensive experiments on general feature matching, fundamental matrix estimation and image registration tasks demonstrate that our proposed method can achieve superior performance over several state-of-the-art approaches.
doi_str_mv 10.1109/TMM.2024.3398266
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMM_2024_3398266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10522853</ieee_id><sourcerecordid>10_1109_TMM_2024_3398266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-e960e830b3e29c5a47fdc1aa8da1988e8c57fee045a503f999569898baa8b3743</originalsourceid><addsrcrecordid>eNpNkD1PwzAURS0EEqWwMzD4DyQ8f8X2hFBEC1IDEipz5CQvTRDElZ0g8e9J1Q5M9w733OEQcssgZQzs_bYoUg5cpkJYw7PsjCyYlSwB0Pp87opDYjmDS3IV4ycAkwr0gjy8-2qKI12hG6eAtHBj3fXDjv70jq6D23f0FftdV_nQed_Qwo-9H2juh4hDnOI1uWjdV8SbUy7Jx-ppmz8nm7f1S_64SWrO9JigzQCNgEogt7VyUrdNzZwzjWPWGDS10i0iSOUUiNZaqzJrrKnmSSW0FEsCx986-BgDtuU-9N8u_JYMyoOAchZQHgSUJwEzcndEekT8N1ecGyXEH6CeVyk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Robust Feature Matching via Graph Neighborhood Motion Consensus</title><source>IEEE Electronic Library (IEL)</source><creator>Huang, Jun ; Li, Honglin ; Gong, Yijia ; Fan, Fan ; Ma, Yong ; Du, Qinglei ; Ma, Jiayi</creator><creatorcontrib>Huang, Jun ; Li, Honglin ; Gong, Yijia ; Fan, Fan ; Ma, Yong ; Du, Qinglei ; Ma, Jiayi</creatorcontrib><description>In this paper, we propose an effective method for mismatch removal, termed as graph neighborhood motion consensus, to address the feature matching problem which plays a pivotal role in various computer vision tasks. In our method, we convert each feature correspondence into a motion field sample and model it with the probabilistic graphical model (PGM). To differentiate mismatches from true matches, we firstly design a metric based on neighborhood topology consensus and neighborhood interaction to evaluate the correctness of each match. We also design a variance-based similarity search module to make the information used more reliable for better matching performance. To derive the solution of PGM, we build a model to transform the problem into an integer quadratic programming problem and obtain its closed-form solution with linear time complexity. Extensive experiments on general feature matching, fundamental matrix estimation and image registration tasks demonstrate that our proposed method can achieve superior performance over several state-of-the-art approaches.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2024.3398266</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayes methods ; Estimation ; Feature extraction ; Feature matching ; locality preservation ; mismatch removal ; motion consistency ; probabilistic graph ; Probabilistic logic ; Task analysis ; Topology ; Transforms</subject><ispartof>IEEE transactions on multimedia, 2024, Vol.26, p.9790-9803</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c217t-e960e830b3e29c5a47fdc1aa8da1988e8c57fee045a503f999569898baa8b3743</cites><orcidid>0009-0009-7291-0015 ; 0000-0001-5893-4090 ; 0000-0002-1116-0662 ; 0009-0004-7211-1954 ; 0009-0008-5349-002X ; 0000-0002-7507-1810 ; 0000-0003-3264-3265</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10522853$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10522853$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huang, Jun</creatorcontrib><creatorcontrib>Li, Honglin</creatorcontrib><creatorcontrib>Gong, Yijia</creatorcontrib><creatorcontrib>Fan, Fan</creatorcontrib><creatorcontrib>Ma, Yong</creatorcontrib><creatorcontrib>Du, Qinglei</creatorcontrib><creatorcontrib>Ma, Jiayi</creatorcontrib><title>Robust Feature Matching via Graph Neighborhood Motion Consensus</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>In this paper, we propose an effective method for mismatch removal, termed as graph neighborhood motion consensus, to address the feature matching problem which plays a pivotal role in various computer vision tasks. In our method, we convert each feature correspondence into a motion field sample and model it with the probabilistic graphical model (PGM). To differentiate mismatches from true matches, we firstly design a metric based on neighborhood topology consensus and neighborhood interaction to evaluate the correctness of each match. We also design a variance-based similarity search module to make the information used more reliable for better matching performance. To derive the solution of PGM, we build a model to transform the problem into an integer quadratic programming problem and obtain its closed-form solution with linear time complexity. Extensive experiments on general feature matching, fundamental matrix estimation and image registration tasks demonstrate that our proposed method can achieve superior performance over several state-of-the-art approaches.</description><subject>Bayes methods</subject><subject>Estimation</subject><subject>Feature extraction</subject><subject>Feature matching</subject><subject>locality preservation</subject><subject>mismatch removal</subject><subject>motion consistency</subject><subject>probabilistic graph</subject><subject>Probabilistic logic</subject><subject>Task analysis</subject><subject>Topology</subject><subject>Transforms</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAURS0EEqWwMzD4DyQ8f8X2hFBEC1IDEipz5CQvTRDElZ0g8e9J1Q5M9w733OEQcssgZQzs_bYoUg5cpkJYw7PsjCyYlSwB0Pp87opDYjmDS3IV4ycAkwr0gjy8-2qKI12hG6eAtHBj3fXDjv70jq6D23f0FftdV_nQed_Qwo-9H2juh4hDnOI1uWjdV8SbUy7Jx-ppmz8nm7f1S_64SWrO9JigzQCNgEogt7VyUrdNzZwzjWPWGDS10i0iSOUUiNZaqzJrrKnmSSW0FEsCx986-BgDtuU-9N8u_JYMyoOAchZQHgSUJwEzcndEekT8N1ecGyXEH6CeVyk</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Huang, Jun</creator><creator>Li, Honglin</creator><creator>Gong, Yijia</creator><creator>Fan, Fan</creator><creator>Ma, Yong</creator><creator>Du, Qinglei</creator><creator>Ma, Jiayi</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0009-7291-0015</orcidid><orcidid>https://orcid.org/0000-0001-5893-4090</orcidid><orcidid>https://orcid.org/0000-0002-1116-0662</orcidid><orcidid>https://orcid.org/0009-0004-7211-1954</orcidid><orcidid>https://orcid.org/0009-0008-5349-002X</orcidid><orcidid>https://orcid.org/0000-0002-7507-1810</orcidid><orcidid>https://orcid.org/0000-0003-3264-3265</orcidid></search><sort><creationdate>2024</creationdate><title>Robust Feature Matching via Graph Neighborhood Motion Consensus</title><author>Huang, Jun ; Li, Honglin ; Gong, Yijia ; Fan, Fan ; Ma, Yong ; Du, Qinglei ; Ma, Jiayi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-e960e830b3e29c5a47fdc1aa8da1988e8c57fee045a503f999569898baa8b3743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bayes methods</topic><topic>Estimation</topic><topic>Feature extraction</topic><topic>Feature matching</topic><topic>locality preservation</topic><topic>mismatch removal</topic><topic>motion consistency</topic><topic>probabilistic graph</topic><topic>Probabilistic logic</topic><topic>Task analysis</topic><topic>Topology</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Jun</creatorcontrib><creatorcontrib>Li, Honglin</creatorcontrib><creatorcontrib>Gong, Yijia</creatorcontrib><creatorcontrib>Fan, Fan</creatorcontrib><creatorcontrib>Ma, Yong</creatorcontrib><creatorcontrib>Du, Qinglei</creatorcontrib><creatorcontrib>Ma, Jiayi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Jun</au><au>Li, Honglin</au><au>Gong, Yijia</au><au>Fan, Fan</au><au>Ma, Yong</au><au>Du, Qinglei</au><au>Ma, Jiayi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Feature Matching via Graph Neighborhood Motion Consensus</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2024</date><risdate>2024</risdate><volume>26</volume><spage>9790</spage><epage>9803</epage><pages>9790-9803</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>In this paper, we propose an effective method for mismatch removal, termed as graph neighborhood motion consensus, to address the feature matching problem which plays a pivotal role in various computer vision tasks. In our method, we convert each feature correspondence into a motion field sample and model it with the probabilistic graphical model (PGM). To differentiate mismatches from true matches, we firstly design a metric based on neighborhood topology consensus and neighborhood interaction to evaluate the correctness of each match. We also design a variance-based similarity search module to make the information used more reliable for better matching performance. To derive the solution of PGM, we build a model to transform the problem into an integer quadratic programming problem and obtain its closed-form solution with linear time complexity. Extensive experiments on general feature matching, fundamental matrix estimation and image registration tasks demonstrate that our proposed method can achieve superior performance over several state-of-the-art approaches.</abstract><pub>IEEE</pub><doi>10.1109/TMM.2024.3398266</doi><tpages>14</tpages><orcidid>https://orcid.org/0009-0009-7291-0015</orcidid><orcidid>https://orcid.org/0000-0001-5893-4090</orcidid><orcidid>https://orcid.org/0000-0002-1116-0662</orcidid><orcidid>https://orcid.org/0009-0004-7211-1954</orcidid><orcidid>https://orcid.org/0009-0008-5349-002X</orcidid><orcidid>https://orcid.org/0000-0002-7507-1810</orcidid><orcidid>https://orcid.org/0000-0003-3264-3265</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-9210
ispartof IEEE transactions on multimedia, 2024, Vol.26, p.9790-9803
issn 1520-9210
1941-0077
language eng
recordid cdi_crossref_primary_10_1109_TMM_2024_3398266
source IEEE Electronic Library (IEL)
subjects Bayes methods
Estimation
Feature extraction
Feature matching
locality preservation
mismatch removal
motion consistency
probabilistic graph
Probabilistic logic
Task analysis
Topology
Transforms
title Robust Feature Matching via Graph Neighborhood Motion Consensus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A50%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Feature%20Matching%20via%20Graph%20Neighborhood%20Motion%20Consensus&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Huang,%20Jun&rft.date=2024&rft.volume=26&rft.spage=9790&rft.epage=9803&rft.pages=9790-9803&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2024.3398266&rft_dat=%3Ccrossref_RIE%3E10_1109_TMM_2024_3398266%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10522853&rfr_iscdi=true