Robust Feature Matching via Graph Neighborhood Motion Consensus
In this paper, we propose an effective method for mismatch removal, termed as graph neighborhood motion consensus, to address the feature matching problem which plays a pivotal role in various computer vision tasks. In our method, we convert each feature correspondence into a motion field sample and...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on multimedia 2024, Vol.26, p.9790-9803 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9803 |
---|---|
container_issue | |
container_start_page | 9790 |
container_title | IEEE transactions on multimedia |
container_volume | 26 |
creator | Huang, Jun Li, Honglin Gong, Yijia Fan, Fan Ma, Yong Du, Qinglei Ma, Jiayi |
description | In this paper, we propose an effective method for mismatch removal, termed as graph neighborhood motion consensus, to address the feature matching problem which plays a pivotal role in various computer vision tasks. In our method, we convert each feature correspondence into a motion field sample and model it with the probabilistic graphical model (PGM). To differentiate mismatches from true matches, we firstly design a metric based on neighborhood topology consensus and neighborhood interaction to evaluate the correctness of each match. We also design a variance-based similarity search module to make the information used more reliable for better matching performance. To derive the solution of PGM, we build a model to transform the problem into an integer quadratic programming problem and obtain its closed-form solution with linear time complexity. Extensive experiments on general feature matching, fundamental matrix estimation and image registration tasks demonstrate that our proposed method can achieve superior performance over several state-of-the-art approaches. |
doi_str_mv | 10.1109/TMM.2024.3398266 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMM_2024_3398266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10522853</ieee_id><sourcerecordid>10_1109_TMM_2024_3398266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-e960e830b3e29c5a47fdc1aa8da1988e8c57fee045a503f999569898baa8b3743</originalsourceid><addsrcrecordid>eNpNkD1PwzAURS0EEqWwMzD4DyQ8f8X2hFBEC1IDEipz5CQvTRDElZ0g8e9J1Q5M9w733OEQcssgZQzs_bYoUg5cpkJYw7PsjCyYlSwB0Pp87opDYjmDS3IV4ycAkwr0gjy8-2qKI12hG6eAtHBj3fXDjv70jq6D23f0FftdV_nQed_Qwo-9H2juh4hDnOI1uWjdV8SbUy7Jx-ppmz8nm7f1S_64SWrO9JigzQCNgEogt7VyUrdNzZwzjWPWGDS10i0iSOUUiNZaqzJrrKnmSSW0FEsCx986-BgDtuU-9N8u_JYMyoOAchZQHgSUJwEzcndEekT8N1ecGyXEH6CeVyk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Robust Feature Matching via Graph Neighborhood Motion Consensus</title><source>IEEE Electronic Library (IEL)</source><creator>Huang, Jun ; Li, Honglin ; Gong, Yijia ; Fan, Fan ; Ma, Yong ; Du, Qinglei ; Ma, Jiayi</creator><creatorcontrib>Huang, Jun ; Li, Honglin ; Gong, Yijia ; Fan, Fan ; Ma, Yong ; Du, Qinglei ; Ma, Jiayi</creatorcontrib><description>In this paper, we propose an effective method for mismatch removal, termed as graph neighborhood motion consensus, to address the feature matching problem which plays a pivotal role in various computer vision tasks. In our method, we convert each feature correspondence into a motion field sample and model it with the probabilistic graphical model (PGM). To differentiate mismatches from true matches, we firstly design a metric based on neighborhood topology consensus and neighborhood interaction to evaluate the correctness of each match. We also design a variance-based similarity search module to make the information used more reliable for better matching performance. To derive the solution of PGM, we build a model to transform the problem into an integer quadratic programming problem and obtain its closed-form solution with linear time complexity. Extensive experiments on general feature matching, fundamental matrix estimation and image registration tasks demonstrate that our proposed method can achieve superior performance over several state-of-the-art approaches.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2024.3398266</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayes methods ; Estimation ; Feature extraction ; Feature matching ; locality preservation ; mismatch removal ; motion consistency ; probabilistic graph ; Probabilistic logic ; Task analysis ; Topology ; Transforms</subject><ispartof>IEEE transactions on multimedia, 2024, Vol.26, p.9790-9803</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c217t-e960e830b3e29c5a47fdc1aa8da1988e8c57fee045a503f999569898baa8b3743</cites><orcidid>0009-0009-7291-0015 ; 0000-0001-5893-4090 ; 0000-0002-1116-0662 ; 0009-0004-7211-1954 ; 0009-0008-5349-002X ; 0000-0002-7507-1810 ; 0000-0003-3264-3265</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10522853$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10522853$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huang, Jun</creatorcontrib><creatorcontrib>Li, Honglin</creatorcontrib><creatorcontrib>Gong, Yijia</creatorcontrib><creatorcontrib>Fan, Fan</creatorcontrib><creatorcontrib>Ma, Yong</creatorcontrib><creatorcontrib>Du, Qinglei</creatorcontrib><creatorcontrib>Ma, Jiayi</creatorcontrib><title>Robust Feature Matching via Graph Neighborhood Motion Consensus</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>In this paper, we propose an effective method for mismatch removal, termed as graph neighborhood motion consensus, to address the feature matching problem which plays a pivotal role in various computer vision tasks. In our method, we convert each feature correspondence into a motion field sample and model it with the probabilistic graphical model (PGM). To differentiate mismatches from true matches, we firstly design a metric based on neighborhood topology consensus and neighborhood interaction to evaluate the correctness of each match. We also design a variance-based similarity search module to make the information used more reliable for better matching performance. To derive the solution of PGM, we build a model to transform the problem into an integer quadratic programming problem and obtain its closed-form solution with linear time complexity. Extensive experiments on general feature matching, fundamental matrix estimation and image registration tasks demonstrate that our proposed method can achieve superior performance over several state-of-the-art approaches.</description><subject>Bayes methods</subject><subject>Estimation</subject><subject>Feature extraction</subject><subject>Feature matching</subject><subject>locality preservation</subject><subject>mismatch removal</subject><subject>motion consistency</subject><subject>probabilistic graph</subject><subject>Probabilistic logic</subject><subject>Task analysis</subject><subject>Topology</subject><subject>Transforms</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAURS0EEqWwMzD4DyQ8f8X2hFBEC1IDEipz5CQvTRDElZ0g8e9J1Q5M9w733OEQcssgZQzs_bYoUg5cpkJYw7PsjCyYlSwB0Pp87opDYjmDS3IV4ycAkwr0gjy8-2qKI12hG6eAtHBj3fXDjv70jq6D23f0FftdV_nQed_Qwo-9H2juh4hDnOI1uWjdV8SbUy7Jx-ppmz8nm7f1S_64SWrO9JigzQCNgEogt7VyUrdNzZwzjWPWGDS10i0iSOUUiNZaqzJrrKnmSSW0FEsCx986-BgDtuU-9N8u_JYMyoOAchZQHgSUJwEzcndEekT8N1ecGyXEH6CeVyk</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Huang, Jun</creator><creator>Li, Honglin</creator><creator>Gong, Yijia</creator><creator>Fan, Fan</creator><creator>Ma, Yong</creator><creator>Du, Qinglei</creator><creator>Ma, Jiayi</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0009-7291-0015</orcidid><orcidid>https://orcid.org/0000-0001-5893-4090</orcidid><orcidid>https://orcid.org/0000-0002-1116-0662</orcidid><orcidid>https://orcid.org/0009-0004-7211-1954</orcidid><orcidid>https://orcid.org/0009-0008-5349-002X</orcidid><orcidid>https://orcid.org/0000-0002-7507-1810</orcidid><orcidid>https://orcid.org/0000-0003-3264-3265</orcidid></search><sort><creationdate>2024</creationdate><title>Robust Feature Matching via Graph Neighborhood Motion Consensus</title><author>Huang, Jun ; Li, Honglin ; Gong, Yijia ; Fan, Fan ; Ma, Yong ; Du, Qinglei ; Ma, Jiayi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-e960e830b3e29c5a47fdc1aa8da1988e8c57fee045a503f999569898baa8b3743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bayes methods</topic><topic>Estimation</topic><topic>Feature extraction</topic><topic>Feature matching</topic><topic>locality preservation</topic><topic>mismatch removal</topic><topic>motion consistency</topic><topic>probabilistic graph</topic><topic>Probabilistic logic</topic><topic>Task analysis</topic><topic>Topology</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Jun</creatorcontrib><creatorcontrib>Li, Honglin</creatorcontrib><creatorcontrib>Gong, Yijia</creatorcontrib><creatorcontrib>Fan, Fan</creatorcontrib><creatorcontrib>Ma, Yong</creatorcontrib><creatorcontrib>Du, Qinglei</creatorcontrib><creatorcontrib>Ma, Jiayi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Jun</au><au>Li, Honglin</au><au>Gong, Yijia</au><au>Fan, Fan</au><au>Ma, Yong</au><au>Du, Qinglei</au><au>Ma, Jiayi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Feature Matching via Graph Neighborhood Motion Consensus</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2024</date><risdate>2024</risdate><volume>26</volume><spage>9790</spage><epage>9803</epage><pages>9790-9803</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>In this paper, we propose an effective method for mismatch removal, termed as graph neighborhood motion consensus, to address the feature matching problem which plays a pivotal role in various computer vision tasks. In our method, we convert each feature correspondence into a motion field sample and model it with the probabilistic graphical model (PGM). To differentiate mismatches from true matches, we firstly design a metric based on neighborhood topology consensus and neighborhood interaction to evaluate the correctness of each match. We also design a variance-based similarity search module to make the information used more reliable for better matching performance. To derive the solution of PGM, we build a model to transform the problem into an integer quadratic programming problem and obtain its closed-form solution with linear time complexity. Extensive experiments on general feature matching, fundamental matrix estimation and image registration tasks demonstrate that our proposed method can achieve superior performance over several state-of-the-art approaches.</abstract><pub>IEEE</pub><doi>10.1109/TMM.2024.3398266</doi><tpages>14</tpages><orcidid>https://orcid.org/0009-0009-7291-0015</orcidid><orcidid>https://orcid.org/0000-0001-5893-4090</orcidid><orcidid>https://orcid.org/0000-0002-1116-0662</orcidid><orcidid>https://orcid.org/0009-0004-7211-1954</orcidid><orcidid>https://orcid.org/0009-0008-5349-002X</orcidid><orcidid>https://orcid.org/0000-0002-7507-1810</orcidid><orcidid>https://orcid.org/0000-0003-3264-3265</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-9210 |
ispartof | IEEE transactions on multimedia, 2024, Vol.26, p.9790-9803 |
issn | 1520-9210 1941-0077 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMM_2024_3398266 |
source | IEEE Electronic Library (IEL) |
subjects | Bayes methods Estimation Feature extraction Feature matching locality preservation mismatch removal motion consistency probabilistic graph Probabilistic logic Task analysis Topology Transforms |
title | Robust Feature Matching via Graph Neighborhood Motion Consensus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A50%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Feature%20Matching%20via%20Graph%20Neighborhood%20Motion%20Consensus&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Huang,%20Jun&rft.date=2024&rft.volume=26&rft.spage=9790&rft.epage=9803&rft.pages=9790-9803&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2024.3398266&rft_dat=%3Ccrossref_RIE%3E10_1109_TMM_2024_3398266%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10522853&rfr_iscdi=true |