Degradation-Aware Dynamic Fourier-Based Network for Spectral Compressive Imaging

We consider the problem of hyperspectral image (HSI) reconstruction, which aims to recover 3D hyperspectral data from 2D compressive HSI measurements acquired by a coded aperture snapshot spectral imaging (CASSI) system. Existing deep learning methods have achieved acceptable results in HSI reconstr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on multimedia 2024, Vol.26, p.2838-2850
Hauptverfasser: Xu, Ping, Liu, Lei, Zheng, Haifeng, Yuan, Xin, Xu, Chen, Xue, Lingyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2850
container_issue
container_start_page 2838
container_title IEEE transactions on multimedia
container_volume 26
creator Xu, Ping
Liu, Lei
Zheng, Haifeng
Yuan, Xin
Xu, Chen
Xue, Lingyun
description We consider the problem of hyperspectral image (HSI) reconstruction, which aims to recover 3D hyperspectral data from 2D compressive HSI measurements acquired by a coded aperture snapshot spectral imaging (CASSI) system. Existing deep learning methods have achieved acceptable results in HSI reconstruction. However, these methods did not consider the imaging system degradation pattern. In this article, based on observing the initialized HSIs obtained by shifting and splitting the measurements, we propose a dynamic Fourier network based on degradation learning, called the degradation-aware dynamic Fourier-based network (DADF-Net). We estimate the degradation feature maps from the degraded hyperspectral images to realize the linear transformation and dynamic processing of the features. In particular, we use the Fourier transform to extract the HSI non-local features. Extensive experimental results show that the proposed model outperforms state-of-the-art algorithms on simulation and real-world HSI datasets.
doi_str_mv 10.1109/TMM.2023.3304450
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMM_2023_3304450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10214675</ieee_id><sourcerecordid>2923110412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-c5f318a49e56afaa48124396e0d37e12c75179aa725369c9547137e0d51c0ef73</originalsourceid><addsrcrecordid>eNpNkE1PwkAQhjdGExG9e_DQxHNxZj-67BFBlATURDxvNu2UFGmLu0XCv3cJHjzNJPO8M5OHsVuEASKYh-ViMeDAxUAIkFLBGeuhkZgCaH0ee8UhNRzhkl2FsAbAyOgee5_QyrvCdVXbpKO985RMDo2rqzyZtjtfkU8fXaAieaVu3_qvpGx98rGlvPNuk4zbeusphOqHklntVlWzumYXpdsEuvmrffY5fVqOX9L52_NsPJqnOTe8S3NVChw6aUhlrnRODpFLYTKCQmhCnmuF2jinuRKZyY2SGuMACoU5UKlFn92f9m59-72j0Nl1_LeJJ208IKITiTxScKJy34bgqbRbX9XOHyyCPXqz0Zs9erN_3mLk7hSpiOgfzlFmWolfDx1oCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923110412</pqid></control><display><type>article</type><title>Degradation-Aware Dynamic Fourier-Based Network for Spectral Compressive Imaging</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Ping ; Liu, Lei ; Zheng, Haifeng ; Yuan, Xin ; Xu, Chen ; Xue, Lingyun</creator><creatorcontrib>Xu, Ping ; Liu, Lei ; Zheng, Haifeng ; Yuan, Xin ; Xu, Chen ; Xue, Lingyun</creatorcontrib><description>We consider the problem of hyperspectral image (HSI) reconstruction, which aims to recover 3D hyperspectral data from 2D compressive HSI measurements acquired by a coded aperture snapshot spectral imaging (CASSI) system. Existing deep learning methods have achieved acceptable results in HSI reconstruction. However, these methods did not consider the imaging system degradation pattern. In this article, based on observing the initialized HSIs obtained by shifting and splitting the measurements, we propose a dynamic Fourier network based on degradation learning, called the degradation-aware dynamic Fourier-based network (DADF-Net). We estimate the degradation feature maps from the degraded hyperspectral images to realize the linear transformation and dynamic processing of the features. In particular, we use the Fourier transform to extract the HSI non-local features. Extensive experimental results show that the proposed model outperforms state-of-the-art algorithms on simulation and real-world HSI datasets.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2023.3304450</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Convolution ; Deep learning ; Degradation ; Feature extraction ; Feature maps ; fourier transform ; Fourier transforms ; Heuristic algorithms ; hyperspectral images ; Hyperspectral imaging ; Image reconstruction ; Imaging ; Linear transformations ; Mathematical models ; snapshot compressive imaging</subject><ispartof>IEEE transactions on multimedia, 2024, Vol.26, p.2838-2850</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-c5f318a49e56afaa48124396e0d37e12c75179aa725369c9547137e0d51c0ef73</citedby><cites>FETCH-LOGICAL-c292t-c5f318a49e56afaa48124396e0d37e12c75179aa725369c9547137e0d51c0ef73</cites><orcidid>0000-0002-7761-6490 ; 0000-0002-8311-7524 ; 0000-0002-8089-8548 ; 0000-0002-2142-721X ; 0000-0003-2593-7687 ; 0000-0001-9271-3304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10214675$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10214675$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, Ping</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Zheng, Haifeng</creatorcontrib><creatorcontrib>Yuan, Xin</creatorcontrib><creatorcontrib>Xu, Chen</creatorcontrib><creatorcontrib>Xue, Lingyun</creatorcontrib><title>Degradation-Aware Dynamic Fourier-Based Network for Spectral Compressive Imaging</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>We consider the problem of hyperspectral image (HSI) reconstruction, which aims to recover 3D hyperspectral data from 2D compressive HSI measurements acquired by a coded aperture snapshot spectral imaging (CASSI) system. Existing deep learning methods have achieved acceptable results in HSI reconstruction. However, these methods did not consider the imaging system degradation pattern. In this article, based on observing the initialized HSIs obtained by shifting and splitting the measurements, we propose a dynamic Fourier network based on degradation learning, called the degradation-aware dynamic Fourier-based network (DADF-Net). We estimate the degradation feature maps from the degraded hyperspectral images to realize the linear transformation and dynamic processing of the features. In particular, we use the Fourier transform to extract the HSI non-local features. Extensive experimental results show that the proposed model outperforms state-of-the-art algorithms on simulation and real-world HSI datasets.</description><subject>Algorithms</subject><subject>Convolution</subject><subject>Deep learning</subject><subject>Degradation</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>fourier transform</subject><subject>Fourier transforms</subject><subject>Heuristic algorithms</subject><subject>hyperspectral images</subject><subject>Hyperspectral imaging</subject><subject>Image reconstruction</subject><subject>Imaging</subject><subject>Linear transformations</subject><subject>Mathematical models</subject><subject>snapshot compressive imaging</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PwkAQhjdGExG9e_DQxHNxZj-67BFBlATURDxvNu2UFGmLu0XCv3cJHjzNJPO8M5OHsVuEASKYh-ViMeDAxUAIkFLBGeuhkZgCaH0ee8UhNRzhkl2FsAbAyOgee5_QyrvCdVXbpKO985RMDo2rqzyZtjtfkU8fXaAieaVu3_qvpGx98rGlvPNuk4zbeusphOqHklntVlWzumYXpdsEuvmrffY5fVqOX9L52_NsPJqnOTe8S3NVChw6aUhlrnRODpFLYTKCQmhCnmuF2jinuRKZyY2SGuMACoU5UKlFn92f9m59-72j0Nl1_LeJJ208IKITiTxScKJy34bgqbRbX9XOHyyCPXqz0Zs9erN_3mLk7hSpiOgfzlFmWolfDx1oCQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Xu, Ping</creator><creator>Liu, Lei</creator><creator>Zheng, Haifeng</creator><creator>Yuan, Xin</creator><creator>Xu, Chen</creator><creator>Xue, Lingyun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7761-6490</orcidid><orcidid>https://orcid.org/0000-0002-8311-7524</orcidid><orcidid>https://orcid.org/0000-0002-8089-8548</orcidid><orcidid>https://orcid.org/0000-0002-2142-721X</orcidid><orcidid>https://orcid.org/0000-0003-2593-7687</orcidid><orcidid>https://orcid.org/0000-0001-9271-3304</orcidid></search><sort><creationdate>2024</creationdate><title>Degradation-Aware Dynamic Fourier-Based Network for Spectral Compressive Imaging</title><author>Xu, Ping ; Liu, Lei ; Zheng, Haifeng ; Yuan, Xin ; Xu, Chen ; Xue, Lingyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-c5f318a49e56afaa48124396e0d37e12c75179aa725369c9547137e0d51c0ef73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Convolution</topic><topic>Deep learning</topic><topic>Degradation</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>fourier transform</topic><topic>Fourier transforms</topic><topic>Heuristic algorithms</topic><topic>hyperspectral images</topic><topic>Hyperspectral imaging</topic><topic>Image reconstruction</topic><topic>Imaging</topic><topic>Linear transformations</topic><topic>Mathematical models</topic><topic>snapshot compressive imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Ping</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Zheng, Haifeng</creatorcontrib><creatorcontrib>Yuan, Xin</creatorcontrib><creatorcontrib>Xu, Chen</creatorcontrib><creatorcontrib>Xue, Lingyun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Ping</au><au>Liu, Lei</au><au>Zheng, Haifeng</au><au>Yuan, Xin</au><au>Xu, Chen</au><au>Xue, Lingyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Degradation-Aware Dynamic Fourier-Based Network for Spectral Compressive Imaging</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2024</date><risdate>2024</risdate><volume>26</volume><spage>2838</spage><epage>2850</epage><pages>2838-2850</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>We consider the problem of hyperspectral image (HSI) reconstruction, which aims to recover 3D hyperspectral data from 2D compressive HSI measurements acquired by a coded aperture snapshot spectral imaging (CASSI) system. Existing deep learning methods have achieved acceptable results in HSI reconstruction. However, these methods did not consider the imaging system degradation pattern. In this article, based on observing the initialized HSIs obtained by shifting and splitting the measurements, we propose a dynamic Fourier network based on degradation learning, called the degradation-aware dynamic Fourier-based network (DADF-Net). We estimate the degradation feature maps from the degraded hyperspectral images to realize the linear transformation and dynamic processing of the features. In particular, we use the Fourier transform to extract the HSI non-local features. Extensive experimental results show that the proposed model outperforms state-of-the-art algorithms on simulation and real-world HSI datasets.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2023.3304450</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7761-6490</orcidid><orcidid>https://orcid.org/0000-0002-8311-7524</orcidid><orcidid>https://orcid.org/0000-0002-8089-8548</orcidid><orcidid>https://orcid.org/0000-0002-2142-721X</orcidid><orcidid>https://orcid.org/0000-0003-2593-7687</orcidid><orcidid>https://orcid.org/0000-0001-9271-3304</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-9210
ispartof IEEE transactions on multimedia, 2024, Vol.26, p.2838-2850
issn 1520-9210
1941-0077
language eng
recordid cdi_crossref_primary_10_1109_TMM_2023_3304450
source IEEE Electronic Library (IEL)
subjects Algorithms
Convolution
Deep learning
Degradation
Feature extraction
Feature maps
fourier transform
Fourier transforms
Heuristic algorithms
hyperspectral images
Hyperspectral imaging
Image reconstruction
Imaging
Linear transformations
Mathematical models
snapshot compressive imaging
title Degradation-Aware Dynamic Fourier-Based Network for Spectral Compressive Imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T15%3A37%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Degradation-Aware%20Dynamic%20Fourier-Based%20Network%20for%20Spectral%20Compressive%20Imaging&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Xu,%20Ping&rft.date=2024&rft.volume=26&rft.spage=2838&rft.epage=2850&rft.pages=2838-2850&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2023.3304450&rft_dat=%3Cproquest_RIE%3E2923110412%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923110412&rft_id=info:pmid/&rft_ieee_id=10214675&rfr_iscdi=true