Degradation-Aware Dynamic Fourier-Based Network for Spectral Compressive Imaging
We consider the problem of hyperspectral image (HSI) reconstruction, which aims to recover 3D hyperspectral data from 2D compressive HSI measurements acquired by a coded aperture snapshot spectral imaging (CASSI) system. Existing deep learning methods have achieved acceptable results in HSI reconstr...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on multimedia 2024, Vol.26, p.2838-2850 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2850 |
---|---|
container_issue | |
container_start_page | 2838 |
container_title | IEEE transactions on multimedia |
container_volume | 26 |
creator | Xu, Ping Liu, Lei Zheng, Haifeng Yuan, Xin Xu, Chen Xue, Lingyun |
description | We consider the problem of hyperspectral image (HSI) reconstruction, which aims to recover 3D hyperspectral data from 2D compressive HSI measurements acquired by a coded aperture snapshot spectral imaging (CASSI) system. Existing deep learning methods have achieved acceptable results in HSI reconstruction. However, these methods did not consider the imaging system degradation pattern. In this article, based on observing the initialized HSIs obtained by shifting and splitting the measurements, we propose a dynamic Fourier network based on degradation learning, called the degradation-aware dynamic Fourier-based network (DADF-Net). We estimate the degradation feature maps from the degraded hyperspectral images to realize the linear transformation and dynamic processing of the features. In particular, we use the Fourier transform to extract the HSI non-local features. Extensive experimental results show that the proposed model outperforms state-of-the-art algorithms on simulation and real-world HSI datasets. |
doi_str_mv | 10.1109/TMM.2023.3304450 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMM_2023_3304450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10214675</ieee_id><sourcerecordid>2923110412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-c5f318a49e56afaa48124396e0d37e12c75179aa725369c9547137e0d51c0ef73</originalsourceid><addsrcrecordid>eNpNkE1PwkAQhjdGExG9e_DQxHNxZj-67BFBlATURDxvNu2UFGmLu0XCv3cJHjzNJPO8M5OHsVuEASKYh-ViMeDAxUAIkFLBGeuhkZgCaH0ee8UhNRzhkl2FsAbAyOgee5_QyrvCdVXbpKO985RMDo2rqzyZtjtfkU8fXaAieaVu3_qvpGx98rGlvPNuk4zbeusphOqHklntVlWzumYXpdsEuvmrffY5fVqOX9L52_NsPJqnOTe8S3NVChw6aUhlrnRODpFLYTKCQmhCnmuF2jinuRKZyY2SGuMACoU5UKlFn92f9m59-72j0Nl1_LeJJ208IKITiTxScKJy34bgqbRbX9XOHyyCPXqz0Zs9erN_3mLk7hSpiOgfzlFmWolfDx1oCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923110412</pqid></control><display><type>article</type><title>Degradation-Aware Dynamic Fourier-Based Network for Spectral Compressive Imaging</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Ping ; Liu, Lei ; Zheng, Haifeng ; Yuan, Xin ; Xu, Chen ; Xue, Lingyun</creator><creatorcontrib>Xu, Ping ; Liu, Lei ; Zheng, Haifeng ; Yuan, Xin ; Xu, Chen ; Xue, Lingyun</creatorcontrib><description>We consider the problem of hyperspectral image (HSI) reconstruction, which aims to recover 3D hyperspectral data from 2D compressive HSI measurements acquired by a coded aperture snapshot spectral imaging (CASSI) system. Existing deep learning methods have achieved acceptable results in HSI reconstruction. However, these methods did not consider the imaging system degradation pattern. In this article, based on observing the initialized HSIs obtained by shifting and splitting the measurements, we propose a dynamic Fourier network based on degradation learning, called the degradation-aware dynamic Fourier-based network (DADF-Net). We estimate the degradation feature maps from the degraded hyperspectral images to realize the linear transformation and dynamic processing of the features. In particular, we use the Fourier transform to extract the HSI non-local features. Extensive experimental results show that the proposed model outperforms state-of-the-art algorithms on simulation and real-world HSI datasets.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2023.3304450</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Convolution ; Deep learning ; Degradation ; Feature extraction ; Feature maps ; fourier transform ; Fourier transforms ; Heuristic algorithms ; hyperspectral images ; Hyperspectral imaging ; Image reconstruction ; Imaging ; Linear transformations ; Mathematical models ; snapshot compressive imaging</subject><ispartof>IEEE transactions on multimedia, 2024, Vol.26, p.2838-2850</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-c5f318a49e56afaa48124396e0d37e12c75179aa725369c9547137e0d51c0ef73</citedby><cites>FETCH-LOGICAL-c292t-c5f318a49e56afaa48124396e0d37e12c75179aa725369c9547137e0d51c0ef73</cites><orcidid>0000-0002-7761-6490 ; 0000-0002-8311-7524 ; 0000-0002-8089-8548 ; 0000-0002-2142-721X ; 0000-0003-2593-7687 ; 0000-0001-9271-3304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10214675$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10214675$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, Ping</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Zheng, Haifeng</creatorcontrib><creatorcontrib>Yuan, Xin</creatorcontrib><creatorcontrib>Xu, Chen</creatorcontrib><creatorcontrib>Xue, Lingyun</creatorcontrib><title>Degradation-Aware Dynamic Fourier-Based Network for Spectral Compressive Imaging</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>We consider the problem of hyperspectral image (HSI) reconstruction, which aims to recover 3D hyperspectral data from 2D compressive HSI measurements acquired by a coded aperture snapshot spectral imaging (CASSI) system. Existing deep learning methods have achieved acceptable results in HSI reconstruction. However, these methods did not consider the imaging system degradation pattern. In this article, based on observing the initialized HSIs obtained by shifting and splitting the measurements, we propose a dynamic Fourier network based on degradation learning, called the degradation-aware dynamic Fourier-based network (DADF-Net). We estimate the degradation feature maps from the degraded hyperspectral images to realize the linear transformation and dynamic processing of the features. In particular, we use the Fourier transform to extract the HSI non-local features. Extensive experimental results show that the proposed model outperforms state-of-the-art algorithms on simulation and real-world HSI datasets.</description><subject>Algorithms</subject><subject>Convolution</subject><subject>Deep learning</subject><subject>Degradation</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>fourier transform</subject><subject>Fourier transforms</subject><subject>Heuristic algorithms</subject><subject>hyperspectral images</subject><subject>Hyperspectral imaging</subject><subject>Image reconstruction</subject><subject>Imaging</subject><subject>Linear transformations</subject><subject>Mathematical models</subject><subject>snapshot compressive imaging</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PwkAQhjdGExG9e_DQxHNxZj-67BFBlATURDxvNu2UFGmLu0XCv3cJHjzNJPO8M5OHsVuEASKYh-ViMeDAxUAIkFLBGeuhkZgCaH0ee8UhNRzhkl2FsAbAyOgee5_QyrvCdVXbpKO985RMDo2rqzyZtjtfkU8fXaAieaVu3_qvpGx98rGlvPNuk4zbeusphOqHklntVlWzumYXpdsEuvmrffY5fVqOX9L52_NsPJqnOTe8S3NVChw6aUhlrnRODpFLYTKCQmhCnmuF2jinuRKZyY2SGuMACoU5UKlFn92f9m59-72j0Nl1_LeJJ208IKITiTxScKJy34bgqbRbX9XOHyyCPXqz0Zs9erN_3mLk7hSpiOgfzlFmWolfDx1oCQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Xu, Ping</creator><creator>Liu, Lei</creator><creator>Zheng, Haifeng</creator><creator>Yuan, Xin</creator><creator>Xu, Chen</creator><creator>Xue, Lingyun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7761-6490</orcidid><orcidid>https://orcid.org/0000-0002-8311-7524</orcidid><orcidid>https://orcid.org/0000-0002-8089-8548</orcidid><orcidid>https://orcid.org/0000-0002-2142-721X</orcidid><orcidid>https://orcid.org/0000-0003-2593-7687</orcidid><orcidid>https://orcid.org/0000-0001-9271-3304</orcidid></search><sort><creationdate>2024</creationdate><title>Degradation-Aware Dynamic Fourier-Based Network for Spectral Compressive Imaging</title><author>Xu, Ping ; Liu, Lei ; Zheng, Haifeng ; Yuan, Xin ; Xu, Chen ; Xue, Lingyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-c5f318a49e56afaa48124396e0d37e12c75179aa725369c9547137e0d51c0ef73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Convolution</topic><topic>Deep learning</topic><topic>Degradation</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>fourier transform</topic><topic>Fourier transforms</topic><topic>Heuristic algorithms</topic><topic>hyperspectral images</topic><topic>Hyperspectral imaging</topic><topic>Image reconstruction</topic><topic>Imaging</topic><topic>Linear transformations</topic><topic>Mathematical models</topic><topic>snapshot compressive imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Ping</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Zheng, Haifeng</creatorcontrib><creatorcontrib>Yuan, Xin</creatorcontrib><creatorcontrib>Xu, Chen</creatorcontrib><creatorcontrib>Xue, Lingyun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Ping</au><au>Liu, Lei</au><au>Zheng, Haifeng</au><au>Yuan, Xin</au><au>Xu, Chen</au><au>Xue, Lingyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Degradation-Aware Dynamic Fourier-Based Network for Spectral Compressive Imaging</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2024</date><risdate>2024</risdate><volume>26</volume><spage>2838</spage><epage>2850</epage><pages>2838-2850</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>We consider the problem of hyperspectral image (HSI) reconstruction, which aims to recover 3D hyperspectral data from 2D compressive HSI measurements acquired by a coded aperture snapshot spectral imaging (CASSI) system. Existing deep learning methods have achieved acceptable results in HSI reconstruction. However, these methods did not consider the imaging system degradation pattern. In this article, based on observing the initialized HSIs obtained by shifting and splitting the measurements, we propose a dynamic Fourier network based on degradation learning, called the degradation-aware dynamic Fourier-based network (DADF-Net). We estimate the degradation feature maps from the degraded hyperspectral images to realize the linear transformation and dynamic processing of the features. In particular, we use the Fourier transform to extract the HSI non-local features. Extensive experimental results show that the proposed model outperforms state-of-the-art algorithms on simulation and real-world HSI datasets.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2023.3304450</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7761-6490</orcidid><orcidid>https://orcid.org/0000-0002-8311-7524</orcidid><orcidid>https://orcid.org/0000-0002-8089-8548</orcidid><orcidid>https://orcid.org/0000-0002-2142-721X</orcidid><orcidid>https://orcid.org/0000-0003-2593-7687</orcidid><orcidid>https://orcid.org/0000-0001-9271-3304</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-9210 |
ispartof | IEEE transactions on multimedia, 2024, Vol.26, p.2838-2850 |
issn | 1520-9210 1941-0077 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMM_2023_3304450 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Convolution Deep learning Degradation Feature extraction Feature maps fourier transform Fourier transforms Heuristic algorithms hyperspectral images Hyperspectral imaging Image reconstruction Imaging Linear transformations Mathematical models snapshot compressive imaging |
title | Degradation-Aware Dynamic Fourier-Based Network for Spectral Compressive Imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T15%3A37%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Degradation-Aware%20Dynamic%20Fourier-Based%20Network%20for%20Spectral%20Compressive%20Imaging&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Xu,%20Ping&rft.date=2024&rft.volume=26&rft.spage=2838&rft.epage=2850&rft.pages=2838-2850&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2023.3304450&rft_dat=%3Cproquest_RIE%3E2923110412%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923110412&rft_id=info:pmid/&rft_ieee_id=10214675&rfr_iscdi=true |